Gröbner bases and behaviors over finite rings

For several decades Gröbner bases have proved useful tools for different areas in system theory, particularly multidimensional system theory. These areas range from controller design to minimal realizations of linear systems over fields. In this paper we focus on the univariate case and identify the so-called “predictable leading monomial property” as a property of a minimal Gröbner basis that is crucial in many of these areas. The property is stronger than “row reducedness”. We revisit the recently developed theory of [17] in which row reducedness is extended to polynomial matrices over the finite ring ℤ<inf>p</inf><sup>r</sup> (with p a prime integer and r a positive integer), which find applications in error control coding over ℤ<inf>p</inf><sup>r</sup>. We recast the ideas of [17] in the more general setting of Gröbner bases and derive new results on how to use minimal Gröbner bases to achieve the predictable leading monomial property over ℤ<inf>p</inf><sup>r</sup>. A major advantage of the Gröbner approach is that computational packages are available to compute a minimal Gröbner basis over ℤ<inf>p</inf><sup>r</sup>, such as the SINGULAR computer algebra system. Another advantage of the Gröbner approach is its generality with respect to the choice of ordering of polynomial vectors.

[1]  Margreta Kuijper,et al.  Minimal Trellis Construction for Finite Support Convolutional Ring Codes , 2008, ICMCTA.

[2]  Margreta Kuijper,et al.  Minimal Gröbner bases and the predictable leading monomial property , 2009, ArXiv.

[3]  Thomas Kailath,et al.  Linear Systems , 1980 .

[4]  G. Greuel,et al.  New developments in the theory of Grobner bases and applications to formal verification , 2008, 0801.1177.

[5]  Kwankyu Lee,et al.  List decoding of Reed-Solomon codes from a Gröbner basis perspective , 2008, J. Symb. Comput..

[6]  Kazuyoshi Mori A new parameterization method for all stabilizing controllers of nD systems without coprime factorizability , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[7]  Wilhelm Plesken,et al.  Janet’s approach to presentations and resolutions for polynomials and linear pdes , 2005 .

[8]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[9]  Margreta Kuijper,et al.  On Minimality of Convolutional Ring Encoders , 2008, IEEE Transactions on Information Theory.

[10]  EIMEAR BYRNE,et al.  Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..

[11]  Margreta Kuijper,et al.  A Unifying System-Theoretic Framework for Errors-and-Erasures Reed-Solomon Decoding , 2001, AAECC.

[12]  Ulrich Oberst,et al.  Multidimensional constant linear systems , 1990, EUROCAST.

[13]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[14]  Vladimir P. Gerdt,et al.  Parallel computation of Janet and Gröbner bases over rational numbers , 2005, Programming and Computer Software.

[15]  G. Norton,et al.  Cyclic codes and minimal strong Gröbner bases over a principal ideal ring , 2003 .

[16]  Patrick Fitzpatrick On the key equation , 1995, IEEE Trans. Inf. Theory.

[17]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[18]  Margreta Kuijper,et al.  Reed-Solomon list decoding from a system-theoretic perspective , 2004, IEEE Transactions on Information Theory.

[19]  J. Polderman,et al.  The predictable degree property and row reducedness for systems over a finite ring , 2007 .

[20]  Margreta Kuijper,et al.  MINIMAL STATE DIAGRAMS FOR CONTROLLABLE BEHAVIORS OVER FINITE RINGS , 2008 .

[21]  E. Rogers,et al.  Minimum lag descriptions and minimal Gro¨bner bases , 1998 .

[22]  Franz Pauer Gröbner bases with coefficients in rings , 2007, J. Symb. Comput..

[23]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[24]  J. Willems,et al.  On constructing a shortest linear recurrence relation , 1997, IEEE Trans. Autom. Control..

[25]  Zhiping Lin,et al.  A Tutorial on GrÖbner Bases With Applications in Signals and Systems , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[27]  Eva Zerz,et al.  A Constructive Solution to Interconnection and Decomposition Problems with Multidimensional Behaviors , 2002, SIAM J. Control. Optim..

[28]  Margreet Kuijper,et al.  Algorithms for Decoding and Interpolation , 2001 .

[29]  H. W. Turnbull,et al.  Lectures on Matrices , 1934 .

[30]  Bruno Buchberger,et al.  Gröbner Bases: A Short Introduction for Systems Theorists , 2001, EUROCAST.

[31]  Margreta Kuijper,et al.  Parametrization of linear recurrence relations by row reduction for sequen- ces over a finite ring , 2008 .

[32]  B. Sundar Rajan,et al.  An efficient algorithm for constructing minimal trellises for codes over finite abelian groups , 1996, IEEE Trans. Inf. Theory.