Gröbner bases and behaviors over finite rings
暂无分享,去创建一个
[1] Margreta Kuijper,et al. Minimal Trellis Construction for Finite Support Convolutional Ring Codes , 2008, ICMCTA.
[2] Margreta Kuijper,et al. Minimal Gröbner bases and the predictable leading monomial property , 2009, ArXiv.
[3] Thomas Kailath,et al. Linear Systems , 1980 .
[4] G. Greuel,et al. New developments in the theory of Grobner bases and applications to formal verification , 2008, 0801.1177.
[5] Kwankyu Lee,et al. List decoding of Reed-Solomon codes from a Gröbner basis perspective , 2008, J. Symb. Comput..
[6] Kazuyoshi Mori. A new parameterization method for all stabilizing controllers of nD systems without coprime factorizability , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..
[7] Wilhelm Plesken,et al. Janet’s approach to presentations and resolutions for polynomials and linear pdes , 2005 .
[8] Joachim Rosenthal,et al. On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.
[9] Margreta Kuijper,et al. On Minimality of Convolutional Ring Encoders , 2008, IEEE Transactions on Information Theory.
[10] EIMEAR BYRNE,et al. Gröbner Bases over Galois Rings with an Application to Decoding Alternant Codes , 2001, J. Symb. Comput..
[11] Margreta Kuijper,et al. A Unifying System-Theoretic Framework for Errors-and-Erasures Reed-Solomon Decoding , 2001, AAECC.
[12] Ulrich Oberst,et al. Multidimensional constant linear systems , 1990, EUROCAST.
[13] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[14] Vladimir P. Gerdt,et al. Parallel computation of Janet and Gröbner bases over rational numbers , 2005, Programming and Computer Software.
[15] G. Norton,et al. Cyclic codes and minimal strong Gröbner bases over a principal ideal ring , 2003 .
[16] Patrick Fitzpatrick. On the key equation , 1995, IEEE Trans. Inf. Theory.
[17] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[18] Margreta Kuijper,et al. Reed-Solomon list decoding from a system-theoretic perspective , 2004, IEEE Transactions on Information Theory.
[19] J. Polderman,et al. The predictable degree property and row reducedness for systems over a finite ring , 2007 .
[20] Margreta Kuijper,et al. MINIMAL STATE DIAGRAMS FOR CONTROLLABLE BEHAVIORS OVER FINITE RINGS , 2008 .
[21] E. Rogers,et al. Minimum lag descriptions and minimal Gro¨bner bases , 1998 .
[22] Franz Pauer. Gröbner bases with coefficients in rings , 2007, J. Symb. Comput..
[23] G. David Forney,et al. Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.
[24] J. Willems,et al. On constructing a shortest linear recurrence relation , 1997, IEEE Trans. Autom. Control..
[25] Zhiping Lin,et al. A Tutorial on GrÖbner Bases With Applications in Signals and Systems , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.
[26] Ralf Fröberg,et al. An introduction to Gröbner bases , 1997, Pure and applied mathematics.
[27] Eva Zerz,et al. A Constructive Solution to Interconnection and Decomposition Problems with Multidimensional Behaviors , 2002, SIAM J. Control. Optim..
[28] Margreet Kuijper,et al. Algorithms for Decoding and Interpolation , 2001 .
[29] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[30] Bruno Buchberger,et al. Gröbner Bases: A Short Introduction for Systems Theorists , 2001, EUROCAST.
[31] Margreta Kuijper,et al. Parametrization of linear recurrence relations by row reduction for sequen- ces over a finite ring , 2008 .
[32] B. Sundar Rajan,et al. An efficient algorithm for constructing minimal trellises for codes over finite abelian groups , 1996, IEEE Trans. Inf. Theory.