A 140 GHz area-and-power-efficient VCO using frequency doubler in 65 nm CMOS

This paper presents a compact, low-phase-noise and lowpower D-band VCO with the tuning range from 140.1 to 143.5 GHz. To improve the area and power efficiency, we avoid using signal amplification and matching circuits in the VCO, where a 70 GHz LC oscillator is directly coupled to a frequency doubler. The layout of the transistors is optimized so that the signal loss and reflection are minimized. The proposed VCO fabricated in a 65 nm CMOS technology occupies the core area of 0.05 mm2. It achieves the output power of −8 dBm and the phase noise of −108.2 dBc/Hz at 10 MHz offset with the power consumption of 24 mW from 1 V supply, which leads to the figure-of-merit (FoM) of −177.4 dBc/Hz. key words: CMOS, D-band, frequency doubler, millimeterwave silicon RFICs, voltage-controlled oscillator (VCO). Classification: Microwave and millimeter wave devices, circuits, and hardware

[1]  Louis J. Ippolito,et al.  Attenuation by Atmospheric Gases , 1986 .

[2]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[3]  J. Wells,et al.  Faster than fiber: The future of multi-G/s wireless , 2009, IEEE Microwave Magazine.

[4]  Behzad Razavi,et al.  A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[5]  David E. Long,et al.  Modeling of integrated RF passive devices , 2010, IEEE Custom Integrated Circuits Conference 2010.

[6]  Robert G Griffin,et al.  A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies. , 2012, Journal of magnetic resonance.

[7]  N. Kukutsu,et al.  120-GHz-Band Wireless Link Technologies for Outdoor 10-Gbit/s Data Transmission , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  Yong-Zhong Xiong,et al.  A Switch-Based ASK Modulator for 10 Gbps 135 GHz Communication by 0.13 $\mu{\rm m}$ MOSFET , 2012, IEEE Microwave and Wireless Components Letters.

[9]  Ehsan Afshari,et al.  A Novel CMOS High-Power Terahertz VCO Based on Coupled Oscillators: Theory and Implementation , 2012, IEEE Journal of Solid-State Circuits.

[10]  K. Aufinger,et al.  An ultra-wideband D-Band signal source chip using a fundamental VCO with frequency doubler in a SiGe bipolar technology , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[11]  Michiel Steyaert,et al.  A 120GHz quadrature frequency generator with 16.2GHz tuning range in 45nm CMOS , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[12]  Peng Li,et al.  A wideband 150GHz antenna by 3D-TSV based Composite Right/Left Handed Transmission Line for Sub-THz biomedical imaging , 2013, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO).

[13]  Jian Zhang,et al.  A 10-Gbit/s Wireless Communication Link Using 16-QAM Modulation in 140-GHz Band , 2013, IEEE Transactions on Microwave Theory and Techniques.

[14]  Ehsan Afshari,et al.  A 105-GHz VCO With 9.5% Tuning Range and 2.8-mW Peak Output Power in a 65-nm Bulk CMOS Process , 2014, IEEE Transactions on Microwave Theory and Techniques.

[15]  Jing Zhang,et al.  85-to-127 GHz CMOS Signal Generation Using a Quadrature VCO With Passive Coupling and Broadband Harmonic Combining for Rotational Spectroscopy , 2015, IEEE Journal of Solid-State Circuits.

[16]  Gang Liu,et al.  Frequency doublers with 10.2/5.2 dBm peak power at 100/202 GHz in 45nm SOI CMOS , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[17]  Jae-Sung Rieh,et al.  D-Band Heterodyne Integrated Imager in a 65-nm CMOS Technology , 2015, IEEE Microwave and Wireless Components Letters.

[18]  Songcheol Hong,et al.  A G-Band Standing-Wave Push–Push VCO Using a Transmission-Line Resonator , 2015, IEEE Transactions on Microwave Theory and Techniques.

[19]  Mehmet Kaynak,et al.  A highly-efficient 138–170 GHz SiGe HBT frequency doubler for power-constrained applications , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[20]  Xiang Yi,et al.  A 93.4-to-104.8 GHz 57 mW fractional-N cascaded sub-sampling PLL with true in-phase injection-coupled QVCO in 65 nm CMOS , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[21]  Q. Gu,et al.  A 165-GHz Transmitter With 10.6% Peak DC-to-RF Efficiency and 0.68-pJ/b Energy Efficiency in 65-nm Bulk CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[22]  Ehsan Afshari,et al.  An efficient 210GHz compact harmonic oscillator with 1.4dBm peak output power and 10.6% tuning range in 130nm BiCMOS , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[23]  Herbert Zirath,et al.  A $D$-Band 48-Gbit/s 64-QAM/QPSK Direct-Conversion I/Q Transceiver Chipset , 2016, IEEE Transactions on Microwave Theory and Techniques.

[24]  Gabriel M. Rebeiz,et al.  A Low-Power 136-GHz SiGe Total Power Radiometer With NETD of 0.25 K , 2016, IEEE Transactions on Microwave Theory and Techniques.

[25]  Chieh-Ying Yang,et al.  A push-push voltage-controlled oscillator for W-band applications in 90-nm CMOS , 2016, 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT).

[26]  Minoru Fujishima,et al.  CMOS Biosensor IC Focusing on Dielectric Relaxations of Biological Water With 120 and 60 GHz Oscillator Arrays , 2016, IEEE Journal of Solid-State Circuits.

[27]  Thomas Zwick,et al.  Miniaturized Millimeter-Wave Radar Sensor for High-Accuracy Applications , 2017, IEEE Transactions on Microwave Theory and Techniques.

[28]  Hsin-Chia Lu,et al.  A D-band wide tuning range VCO using switching transformer , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[29]  Ehsan Afshari,et al.  An Efficient High-Power Fundamental Oscillator Above $f_{\max }/2$ : A Systematic Design , 2017, IEEE Transactions on Microwave Theory and Techniques.

[30]  Omeed Momeni,et al.  A 190-GHz VCO With 20.7% Tuning Range Employing an Active Mode Switching Block in a 130 nm SiGe BiCMOS , 2017, IEEE Journal of Solid-State Circuits.

[31]  J. Liu,et al.  A Low Phase Noise 210-GHz Triple-Push Ring Oscillator in 90-nm CMOS , 2018, IEEE Transactions on Microwave Theory and Techniques.