Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background.

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω_{0}^{T}<5.58×10^{-8}, Ω_{0}^{V}<6.35×10^{-8}, and Ω_{0}^{S}<1.08×10^{-7} at a reference frequency f_{0}=25  Hz.

B. A. Boom | H. N. Isa | P. B. Covas | M. Fejer | P. Couvares | J. Gair | S. Babak | N. Gehrels | S. Fairhurst | A. Heptonstall | D. Hofman | B. Abbott | E. Huerta | Z. Etienne | M. Fishbach | D. George | Zoheyr Doctor | D. Holz | H. Chen | R. Abbott | T. Abbott | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | G. Allen | A. Allocca | P. Altin | A. Amato | A. Ananyeva | S. Anderson | W. Anderson | S. Angelova | S. Appert | K. Arai | M. Araya | J. Areeda | S. Ascenzi | G. Ashton | S. Aston | P. Astone | P. Aufmuth | K. AultONeal | C. Austin | A. Ávila-Álvarez | P. Bacon | M. Bader | S. Bae | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | S. Banagiri | J. Barayoga | S. Barclay | B. Barish | D. Barker | K. Barkett | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bawaj | J. Bayley | M. Bazzan | B. Bécsy | M. Bejger | A. Bell | G. Bergmann | J. J. Bero | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | S. Biscoveanu | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | S. Bloemen | N. Bode | M. Boer | G. Bogaert | F. Bondu | E. Bonilla | R. Bonnand | R. Bork | V. Boschi | S. Bose | K. Bossie | Y. Bouffanais | A. Bozzi | C. Bradaschia | M. Branchesi | J. Brau | T. Briant | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | T. Callister | E. Calloni | J. Camp | K. Cannon | H. Cao | J. Cao | E. Capocasa | F. Carbognani | S. Caride | M. Carney | J. Diaz | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | P. Cerdá-Durán | G. Cerretani | E. Cesarini | S. Chamberlin | M. Chan | S. Chao | P. Charlton | E. Chase | É. Chassande-Mottin | D. Chatterjee | B. Cheeseboro | X. Chen | Y. Chen | H.-P. Cheng | H. Chia | A. Chincarini | A. Chiummo | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | S. Chung | G. Ciani | R. Ciolfi | A. Cirone | F. Clara | J. Clark | P. Clearwater | F. Cleva | C. Cocchieri | P. Cohadon | C. Collette | L. Cominsky | M. Constancio | L. Conti | S. Cooper | P. Corban | I. Cordero-Carrión | K. R. Corley | N. Cornish | A. Corsi | S. Cortese | C. Costa | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | T. Creighton | J. Cripe | S. Crowder | T. Cullen | A. Cumming | L. Cunningham | E. Cuoco | T. Canton | G. Dálya | S. Danilishin | S. D’Antonio | K. Danzmann | V. Dattilo | I. Dave | D. Davis | E. Daw | D. DeBra | J. Degallaix | S. Deleglise | N. Demos | T. Dent | R. DeSalvo | S. Dhurandhar | M. Díaz | F. Donovan | K. Dooley | S. Doravari | I. Dorrington | T. Downes | M. Drago | J. Driggers | Z. Du | P. Dupej | S. Dwyer | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | R. Eisenstein | D. Estevez | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | E. Fauchon-Jones | Marc Favata | M. Fays | C. Fee | J. Feicht | Á. Fernández-Galiana | I. Ferrante | F. Ferrini | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | M. Fitz-Axen | R. Flaminio | M. Fletcher | H. Fong | J. Font | P. Forsyth | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | B. Gadre | S. Gaebel | L. Gammaitoni | M. Ganija | S. Gaonkar | C. García-Quirós | F. Garufi | B. Gateley | S. Gaudio | G. Gaur | V. Gayathri | G. Gemme | E. Génin | A. Gennai | L. Gergely | V. Germain | S. Ghonge | Abhirup Ghosh | A. Ghosh | S. Ghosh | J. Giaime | A. Giazotto | K. Gill | L. Glover | E. Goetz | R. Goetz | B. Goncharov | G. González | A. Gopakumar | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | E. Gretarsson | P. Groot | H. Grote | S. Grunewald | G. Guidi | A. Gupta | M. Gupta | R. Gustafson | O. Halim | B. Hall | E. Hall | E. Hamilton | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | O. Hannuksela | J. Hanson | T. Hardwick | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | M. Heurs | S. Hild | T. Hinderer | D. Hoak | K. Holt | P. Hopkins | C. Horst | J. Hough | E. Howell | A. Hreibi | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | G. Intini | J. Isac | M. Isi | B. Iyer | T. Jacqmin | K. Jani | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | J. Junker | C. Kalaghatgi | B. Kamai | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Karki | K. Karvinen | M. Kasprzack | W. Katzman | S. Kaufer | K. Kawabe | F. Kéfélian | Yi-ming Hu | S. Antier | N. Arnaud | I. Belahcene | B. Berger | M. Bizouard | J. Blackman | V. Brisson | M. Canepa | F. Cavalier | E. Coccia | D. Cohen | M. Davier | R. Essick | V. Frey | P. Gruning | M. Hannam | P. Hello | D. Huet | K. Izumi | V. Kalogera | T. Adams | P. Addesso | B. Allen | M. Ast | C. Aulbert | J. Batch | S. Bhagwat | C. Biwer | O. Bock | A. Bohé | D. Brown | C. Buchanan | J. Calderón Bustillo | C. Capano | C. Cepeda | J. Chow | A. Colla | M. De Laurentis | W. Del Pozzo | T. Denker | V. Dergachev | R. Derosa | R. De Rosa | L. Di Fiore | M. Di Giovanni | A. Di Lieto | I. Di Palma | V. Dolique | R. Douglas | M. Ducrot | H. Eggenstein | M. Factourovich | H. Fehrmann | K. Giardina | X. Guo | K. Gushwa | M. Hart | E. Houston | N. Indik | S. Jawahar | F. Jiménez-Forteza | W. Johnson | E. Katsavounidis | B. Agarwal | C. Dreissigacker | M. Afrough | D. V. Atallah | C. Beer | C. Billman | J. Broida | P. Canizares | T. Chmiel | A. J. Chua | A. K. Chung | C. Cirelli | A. Dasgupta | B. Day | S. De | J. Devenson | D. Finstad | S. Forsyth | E. Fries | J. George | S. Gomes | M. Katolik | E. Coughlin | E. Ferreira | E. Gustafson | P. Brady | R. Byer | T. Corbitt | C. F. Da Silva Costa | T. Di Girolamo | S. Di Pace | F. di Renzo | M. Dovale Álvarez | J. G. Gonzalez Castro | R. De Pietri | C. De Rossi | O. de Varona | P. W. F. Forsyth | H. Cho | J. Bero | D. Brown | S. Ghosh | A. Bell | T. D. Canton | K. Corley | S. Anderson | M. Gupta | Archisman Ghosh | A. Cumming | T. Hardwick | R. Jones | K. Kawabe

[1]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  B. A. Boom,et al.  GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences , 2017, 1710.05837.

[4]  B. A. Boom,et al.  First Search for Nontensorial Gravitational Waves from Known Pulsars. , 2017, Physical review letters.

[5]  T.Narita,et al.  Construction of KAGRA: an Underground Gravitational Wave Observatory , 2017, 1712.00148.

[6]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[7]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[8]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[9]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[10]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[11]  M. Isi,et al.  Probing gravitational wave polarizations with signals from compact binary coalescences , 2017, 1710.03794.

[12]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[13]  Duncan A. Brown,et al.  Calibration uncertainty for Advanced LIGO’s first and second observing runs , 2017, 1708.03023.

[14]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[15]  T. Regimbau,et al.  Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background , 2017, 1704.08373.

[16]  Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model , 2017, 1704.07084.

[17]  M. Pitkin,et al.  Probing dynamical gravity with the polarization of continuous gravitational waves , 2017, 1703.07530.

[18]  B. A. Boom,et al.  Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run , 2016, 1612.02029.

[19]  B. A. Boom,et al.  Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. , 2016, Physical review letters.

[20]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[21]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[22]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[23]  I. Mandel,et al.  Limits of Astrophysics with Gravitational-Wave Backgrounds , 2016, 1604.02513.

[24]  B. A. Boom,et al.  GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .

[25]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[26]  A. Kostelecký,et al.  Testing local Lorentz invariance with gravitational waves , 2016, 1602.04782.

[27]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[28]  B. A. Boom,et al.  GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. , 2016, Physical review letters.

[29]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[30]  The LIGO Scientific Collaboration,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries , 2016, 1602.03838.

[31]  Sean A. Morris,et al.  Mock data and science challenge for detecting an astrophysical stochastic gravitational-wave background with Advanced LIGO and Advanced Virgo , 2015, 1506.06744.

[32]  V. Mandic,et al.  Model of the stochastic gravitational-wave background due to core collapse to black holes , 2015, 1506.02631.

[33]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[34]  C. Mead,et al.  Detecting beyond-Einstein polarizations of continuous gravitational waves , 2015, 1502.00333.

[35]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[36]  Alejandro López,et al.  First test of high frequency Gravity Waves from inflation using Advanced LIGO , 2013, 1305.5855.

[37]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[38]  E. Thrane,et al.  Estimates of maximum energy density of cosmological gravitational-wave backgrounds , 2014 .

[39]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[40]  S. Klimenko,et al.  Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.

[41]  R. Schofield,et al.  Correlated noise in networks of gravitational-wave detectors: subtraction and mitigation , 2014, 1406.2367.

[42]  T. Regimbau,et al.  Measuring neutron-star ellipticity with measurements of the stochastic gravitational-wave background , 2014, 1404.4025.

[43]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[44]  S. Klimenko,et al.  Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. , 2013, Physical review letters.

[45]  J. Romano,et al.  Treatment of calibration uncertainty in multi-baseline cross-correlation searches for gravitational waves , 2012, 1205.3112.

[46]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[47]  Kazuhiro Hayama,et al.  Probing for massive stochastic gravitational-wave background with a detector network , 2013, 1307.1281.

[48]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[49]  Nelson Christensen,et al.  Correlated magnetic noise in global networks of gravitational-wave detectors: Observations and implications , 2013, 1303.2613.

[50]  T. Regimbau,et al.  Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors , 2013 .

[51]  E. Howell,et al.  On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers , 2012, 1209.0595.

[52]  P. Rosado Gravitational wave background from rotating neutron stars , 2012, 1206.1330.

[53]  K. Chatziioannou,et al.  Model-Independent Test of General Relativity: An Extended post-Einsteinian Framework with Complete Polarization Content , 2012, 1204.2585.

[54]  V. Mandic,et al.  Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors , 2011, 1112.1898.

[55]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[56]  P. Rosado,et al.  Gravitational wave background from binary systems , 2011, 1106.5795.

[57]  David Blair,et al.  STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES , 2011, 1104.3565.

[58]  D. Blair,et al.  Observational upper limits on the gravitational wave production of core collapse supernovae , 2010, 1008.0472.

[59]  V. Mandic,et al.  Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.

[60]  S. Kawamura,et al.  Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1-1 Hz , 2009, 0911.0525.

[61]  R. Durrer,et al.  The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition , 2009, 0909.0622.

[62]  N. Yunes,et al.  Chern-Simons Modified General Relativity , 2009, 0907.2562.

[63]  K. Hayama,et al.  Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers , 2009, 0903.0528.

[64]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[65]  L. Finn,et al.  Gravitational-wave probe of effective quantum gravity , 2007, 0712.2542.

[66]  R. Durrer,et al.  Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach , 2007, 0711.2593.

[67]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[68]  R. Easther,et al.  Gravitational wave production at the end of inflation. , 2006, Physical review letters.

[69]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[70]  A. Buonanno,et al.  Stochastic Gravitational Wave Background from Cosmological Supernovae , 2004, astro-ph/0412277.

[71]  A. Kostelecký Gravity, Lorentz violation, and the standard model , 2003, hep-th/0312310.

[72]  R. Jackiw,et al.  Chern-Simons modification of general relativity , 2003, gr-qc/0308071.

[73]  N. Bissantz,et al.  Monthly Notices of the Royal Astronomical Society , 2003 .

[74]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[75]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[76]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[77]  Christensen,et al.  Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. , 1992, Physical review. D, Particles and fields.

[78]  R. Wagoner,et al.  Gravitational-wave observations as a tool for testing relativistic gravity , 1973 .

[79]  R. Isaacson Gravitational radiation in the limit of high frequency. II - Nonlinear terms and the effective stress tensor. , 1968 .

[80]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .