Configurational forces and the basic laws for crack propagation

This paper develops a framework for dynamical fracture, concentrating on the derivation of basic field equations that describe the motion of the crack tip in two space-dimensions. The theory is based on the notion of configurational forces in conjunction with a mechanical version of the second law.

[1]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[2]  C. Atkinson,et al.  The flow of energy into the tip of a moving crack , 1968 .

[3]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[4]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[5]  Ares J. Rosakis,et al.  The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method , 1984 .

[6]  M. De Handbuch der Physik , 1957 .

[7]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  P. Podio-Guidugli Inertia and invariance , 1997 .

[9]  Morton E. Gurtin,et al.  Multiphase thermomechanics with interfacial structure , 1990 .

[10]  M. Gurtin,et al.  On the energy release rate in elastodynamic crack propagation , 1980 .

[11]  Morton E. Gurtin,et al.  The nature of configurational forces , 1995 .

[12]  L. B. Freund,et al.  Energy flux into the tip of an extending crack in an elastic solid , 1972 .

[13]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[14]  J. D. Eshelby The Continuum Theory of Lattice Defects , 1956 .

[15]  Ares J. Rosakis,et al.  Dynamic fracture initiation and propagation in 4340 steel under impact loading , 1990 .

[16]  L. B. Freund,et al.  Analysis of dynamic growth of a tensile crack in an elastic-plastic material , 1985 .

[17]  John W. Hutchinson,et al.  Plastic stress and strain fields at a crack tip , 1968 .

[18]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .