Parameter Estimation of Phase-Modulated Signals Using Bayesian Unwrapping

Parametric estimation of phase-modulated signals (PMS) in additive white Gaussian noise is considered. The prohibitive computational expense of maximum likelihood estimation for this problem has led to the development of many suboptimal estimators which are relatively inaccurate and cannot operate at low signal-to-noise ratios (SNRs). In this paper, a novel technique based on a probabilistic unwrapping of the phase of the observations is developed. The method is capable of more accurate estimation and operates effectively at much lower SNRs than existing algorithms. This is demonstrated in Monte Carlo simulations.

[1]  F. Taylor,et al.  Estimation of instantaneous frequency using the discrete Wigner distribution , 1990 .

[2]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[3]  S. Challa,et al.  Bayesian and Dempster-Shafer fusion , 2004 .

[4]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[5]  Anna Scaglione,et al.  Product high-order ambiguity function for multicomponent polynomial-phase signal modeling , 1998, IEEE Trans. Signal Process..

[6]  Mark R. Morelande,et al.  On the performance of cyclic moments-based parameter estimators of amplitude modulated polynomial phase signals , 2002, IEEE Trans. Signal Process..

[7]  Richard Andrew Wiltshire,et al.  A New Class of Multilinear Functions for Polynomial Phase Signal Analysis , 2009, IEEE Transactions on Signal Processing.

[8]  Benjamin J. Slocumb,et al.  A polynomial phase parameter estimation-phase unwrapping algorithm , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Jakob Ängeby,et al.  Estimating signal parameters using the nonlinear instantaneous least squares approach , 2000, IEEE Trans. Signal Process..

[10]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[11]  Jakob Ängeby Aliasing of polynomial-phase signal parameters , 2000, IEEE Trans. Signal Process..

[12]  Boualem Boashash,et al.  Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra , 1994, IEEE Trans. Signal Process..

[13]  Braham Barkat,et al.  Instantaneous frequency estimation of polynomial FM signals using the peak of the PWVD: statistical performance in the presence of additive gaussian noise , 1999, IEEE Trans. Signal Process..

[14]  Messaoud Benidir,et al.  Polynomial phase signal analysis based on the polynomial derivatives decompositions , 1999, IEEE Trans. Signal Process..

[15]  Benjamin Friedlander,et al.  A modification of the discrete polynomial transform , 1998, IEEE Trans. Signal Process..

[16]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[17]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[18]  Peter O'Shea,et al.  A fast algorithm for estimating the parameters of a quadratic FM signal , 2004, IEEE Transactions on Signal Processing.

[19]  Peter Händel,et al.  Multicomponent polynomial phase signal analysis using a tracking algorithm , 1999, IEEE Trans. Signal Process..

[20]  Steven A. Tretter,et al.  Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.

[21]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[22]  Dawei Huang,et al.  Least squares estimation of polynomial phase signals via stochastic tree-search , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).