Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology
暂无分享,去创建一个
Carsten Rockstuhl | Su-Yong Lee | Jaewan Kim | Changhyoup Lee | Hyunseok Jeong | Hyunchul Nha | Changhun Oh | Jaewan Kim | Hyunseok Jeong | C. Rockstuhl | H. Nha | Su-Yong Lee | Changhyoup Lee | C. Oh | Changhun Oh
[1] Gerardo Adesso,et al. Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..
[2] S. Mancini,et al. General-dyne unravelling of a thermal master equation , 2014, Russian Journal of Mathematical Physics.
[3] J. Cirac,et al. Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.
[4] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[5] Hyunchul Nha,et al. Proposed test of quantum nonlocality for continuous variables. , 2004, Physical review letters.
[6] Simón. Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.
[7] N J Cerf,et al. Proposal for a loophole-free Bell test using homodyne detection. , 2004, Physical review letters.
[8] Jean-Paul Blaizot,et al. Quantum Theory of Finite Systems , 1985 .
[9] A.I.Lvovsky,et al. Continuous-variable optical quantum state tomography , 2005, quant-ph/0511044.
[10] Tobias Gehring,et al. Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.
[11] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[12] M. Paris,et al. Quantum discord for Gaussian states with non-Gaussian measurements , 2012 .
[13] Seth Lloyd,et al. Optimality of Gaussian discord. , 2013, Physical review letters.
[14] J. Fiurášek. Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.
[15] J. B. Kernan,et al. An Information‐Theoretic Approach* , 1971 .
[16] Alex Monras,et al. Phase space formalism for quantum estimation of Gaussian states , 2013, 1303.3682.
[17] Ivette Fuentes,et al. Quantum parameter estimation using multi-mode Gaussian states , 2015, 1502.07924.
[18] Zhang Jiang,et al. Quantum Fisher information for states in exponential form , 2013, 1310.2687.
[19] M. Barbieri,et al. Homodyne estimation of Gaussian quantum discord. , 2012, Physical review letters.
[20] Samuel P Nolan,et al. Optimal and Robust Quantum Metrology Using Interaction-Based Readouts. , 2017, Physical review letters.
[21] N. Treps,et al. Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.4637.
[22] C. Ferrie. Data-processing inequalities for quantum metrology , 2014, 1404.3225.
[23] Gerardo Adesso,et al. Multiparameter Gaussian quantum metrology , 2017, Physical Review A.
[24] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[25] Benjamin Friedlander,et al. Computation of the exact information matrix of Gaussian time series with stationary random components , 1985, 1985 24th IEEE Conference on Decision and Control.
[26] Marian. Squeezed states with thermal noise. I. Photon-number statistics. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[27] Timothy C. Ralph,et al. Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).
[28] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[29] Cirac,et al. Inseparability criterion for continuous variable systems , 1999, Physical review letters.
[30] H. J. Carmichael,et al. Distinguishing two single-mode Gaussian states by homodyne detection: An information-theoretic approach , 2005 .
[31] Matteo G. A. Paris,et al. Bayesian estimation in homodyne interferometry , 2009, 0901.2585.
[32] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[33] Matteo G. A. Paris,et al. Continuous-variable quantum probes for structured environments , 2017, 1710.06474.
[34] E. Bagan,et al. Phase estimation for thermal Gaussian states , 2008, 0811.3408.
[35] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[36] Warwick P. Bowen,et al. Quantum metrology and its application in biology , 2014, 1409.0950.
[37] Vittorio Giovannetti,et al. Optimal Gaussian metrology for generic multimode interferometric circuit , 2018, New Journal of Physics.
[38] J. Calsamiglia,et al. Computable measure of nonclassicality for light. , 2004, Physical review letters.
[39] M. Zwierz,et al. Parameter estimation in the presence of the most general Gaussian dissipative reservoir , 2016, 1609.03178.
[40] A. Lvovsky,et al. Continuous-variable optical quantum-state tomography , 2009 .
[41] J Eisert,et al. Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.
[42] M. Hayashi,et al. Quantum information with Gaussian states , 2007, 0801.4604.
[43] Claudia Biermann,et al. Mathematical Methods Of Statistics , 2016 .
[44] Se-Wan Ji,et al. Quantum steering of Gaussian states via non-Gaussian measurements , 2015, Scientific Reports.
[45] Alex Monras. Optimal phase measurements with pure Gaussian states , 2006 .
[46] Karsten Danzmann,et al. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.
[47] S. Braunstein,et al. Quantum Information with Continuous Variables , 2004, quant-ph/0410100.
[48] A. Serafini. Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .
[49] Hwang Lee,et al. Bounds on quantum multiple-parameter estimation with Gaussian state , 2014, The European Physical Journal D.
[50] Sabine Wollmann,et al. Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.
[51] I. Fuentes,et al. Optimal probe states for the estimation of Gaussian unitary channels , 2016, 1603.05545.
[52] P. Marian,et al. Squeezed states with thermal noise. II. Damping and photon counting. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[53] Alex Monras,et al. Optimal quantum estimation of loss in bosonic channels. , 2007, Physical review letters.
[54] Rory A. Fisher,et al. Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[55] Ram Zamir,et al. A Proof of the Fisher Information Inequality via a Data Processing Argument , 1998, IEEE Trans. Inf. Theory.