Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology

The central issue in quantum parameter estimation is to find out the optimal measurement setup that leads to the ultimate lower bound of an estimation error. We address here a question of whether a Gaussian measurement scheme can achieve the ultimate bound for phase estimation in single-mode Gaussian metrology that exploits single-mode Gaussian probe states in a Gaussian environment. We identify three types of optimal Gaussian measurement setups yielding the maximal Fisher information depending on displacement, squeezing, and thermalization of the probe state. We show that the homodyne measurement attains the ultimate bound for both displaced thermal probe states and squeezed vacuum probe states, whereas for the other single-mode Gaussian probe states, the optimized Gaussian measurement cannot be the optimal setup, although they are sometimes nearly optimal. We then demonstrate that the measurement on the basis of the product quadrature operators $$\hat X\hat P + \hat P\hat X$$X̂P̂+P̂X̂, i.e., a non-Gaussian measurement, is required to be fully optimal.Quantum metrology: Optimal Gaussian measurementsOptimal measurement schemes have been identified for certain Gaussian states used in quantum information processing. Gaussian states are useful resources in quantum optical technologies as they are relatively easy to control, and can be employed to analyse quantum information processes. Such Gaussian states can be characterized using so-called Gaussian measurement schemes but it’s usually not so clear what the optimal measurement setups are. An international team of researchers led by Changhyoup Lee from the Karlsruhe Institute of Technology now identify optimal measurement setups to obtain phase information for different types of single-mode Gaussian states. Such an approach could be extended to other parameters, such as frequency, as well as to multi-mode Gaussian states, where entanglement starts to play an important role.

[1]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[2]  S. Mancini,et al.  General-dyne unravelling of a thermal master equation , 2014, Russian Journal of Mathematical Physics.

[3]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[4]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[5]  Hyunchul Nha,et al.  Proposed test of quantum nonlocality for continuous variables. , 2004, Physical review letters.

[6]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[7]  N J Cerf,et al.  Proposal for a loophole-free Bell test using homodyne detection. , 2004, Physical review letters.

[8]  Jean-Paul Blaizot,et al.  Quantum Theory of Finite Systems , 1985 .

[9]  A.I.Lvovsky,et al.  Continuous-variable optical quantum state tomography , 2005, quant-ph/0511044.

[10]  Tobias Gehring,et al.  Ab initio quantum-enhanced optical phase estimation using real-time feedback control , 2015, Nature Photonics.

[11]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[12]  M. Paris,et al.  Quantum discord for Gaussian states with non-Gaussian measurements , 2012 .

[13]  Seth Lloyd,et al.  Optimality of Gaussian discord. , 2013, Physical review letters.

[14]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[15]  J. B. Kernan,et al.  An Information‐Theoretic Approach* , 1971 .

[16]  Alex Monras,et al.  Phase space formalism for quantum estimation of Gaussian states , 2013, 1303.3682.

[17]  Ivette Fuentes,et al.  Quantum parameter estimation using multi-mode Gaussian states , 2015, 1502.07924.

[18]  Zhang Jiang,et al.  Quantum Fisher information for states in exponential form , 2013, 1310.2687.

[19]  M. Barbieri,et al.  Homodyne estimation of Gaussian quantum discord. , 2012, Physical review letters.

[20]  Samuel P Nolan,et al.  Optimal and Robust Quantum Metrology Using Interaction-Based Readouts. , 2017, Physical review letters.

[21]  N. Treps,et al.  Quantum parameter estimation using general single-mode Gaussian states , 2013, 1307.4637.

[22]  C. Ferrie Data-processing inequalities for quantum metrology , 2014, 1404.3225.

[23]  Gerardo Adesso,et al.  Multiparameter Gaussian quantum metrology , 2017, Physical Review A.

[24]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[25]  Benjamin Friedlander,et al.  Computation of the exact information matrix of Gaussian time series with stationary random components , 1985, 1985 24th IEEE Conference on Decision and Control.

[26]  Marian Squeezed states with thermal noise. I. Photon-number statistics. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[27]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[28]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[29]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[30]  H. J. Carmichael,et al.  Distinguishing two single-mode Gaussian states by homodyne detection: An information-theoretic approach , 2005 .

[31]  Matteo G. A. Paris,et al.  Bayesian estimation in homodyne interferometry , 2009, 0901.2585.

[32]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[33]  Matteo G. A. Paris,et al.  Continuous-variable quantum probes for structured environments , 2017, 1710.06474.

[34]  E. Bagan,et al.  Phase estimation for thermal Gaussian states , 2008, 0811.3408.

[35]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[36]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[37]  Vittorio Giovannetti,et al.  Optimal Gaussian metrology for generic multimode interferometric circuit , 2018, New Journal of Physics.

[38]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[39]  M. Zwierz,et al.  Parameter estimation in the presence of the most general Gaussian dissipative reservoir , 2016, 1609.03178.

[40]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[41]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[42]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[43]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[44]  Se-Wan Ji,et al.  Quantum steering of Gaussian states via non-Gaussian measurements , 2015, Scientific Reports.

[45]  Alex Monras Optimal phase measurements with pure Gaussian states , 2006 .

[46]  Karsten Danzmann,et al.  Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. , 2016, Physical review letters.

[47]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[48]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[49]  Hwang Lee,et al.  Bounds on quantum multiple-parameter estimation with Gaussian state , 2014, The European Physical Journal D.

[50]  Sabine Wollmann,et al.  Observation of Genuine One-Way Einstein-Podolsky-Rosen Steering. , 2015, Physical review letters.

[51]  I. Fuentes,et al.  Optimal probe states for the estimation of Gaussian unitary channels , 2016, 1603.05545.

[52]  P. Marian,et al.  Squeezed states with thermal noise. II. Damping and photon counting. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[53]  Alex Monras,et al.  Optimal quantum estimation of loss in bosonic channels. , 2007, Physical review letters.

[54]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[55]  Ram Zamir,et al.  A Proof of the Fisher Information Inequality via a Data Processing Argument , 1998, IEEE Trans. Inf. Theory.