Fusing state spaces for markov chain Monte Carlo rendering

Rendering algorithms using Markov chain Monte Carlo (MCMC) currently build upon two different state spaces. One of them is the path space, where the algorithms operate on the vertices of actual transport paths. The other state space is the primary sample space, where the algorithms operate on sequences of numbers used for generating transport paths. While the two state spaces are related by the sampling procedure of transport paths, all existing MCMC rendering algorithms are designed to work within only one of the state spaces. We propose a first framework which provides a comprehensive connection between the path space and the primary sample space. Using this framework, we can use mutation strategies designed for one space with mutation strategies in the respective other space. As a practical example, we take a combination of manifold exploration and multiplexed Metropolis light transport using our framework. Our results show that the simultaneous use of the two state spaces improves the robustness of MCMC rendering. By combining efficient local exploration in the path space with global jumps in primary sample space, our method achieves more uniform convergence as compared to using only one space.

[1]  Wenzel Jakob,et al.  Reversible Jump Metropolis Light Transport Using Inverse Mappings , 2017, ACM Trans. Graph..

[2]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[3]  HanikaJohannes,et al.  Improved Half Vector Space Light Transport , 2015 .

[4]  HanikaJohannes,et al.  The natural-constraint representation of the path space for efficient light transport simulation , 2014 .

[5]  Anton Kaplanyan,et al.  The natural-constraint representation of the path space for efficient light transport simulation , 2014, ACM Trans. Graph..

[6]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[7]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[8]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[9]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[10]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[11]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[12]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[15]  Jaakko Lehtinen,et al.  Anisotropic Gaussian mutations for metropolis light transport through Hessian-Hamiltonian dynamics , 2015, ACM Trans. Graph..

[16]  Anton Kaplanyan,et al.  Improved Half Vector Space Light Transport , 2015, Comput. Graph. Forum.

[17]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[18]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[19]  Thomas B. Schön,et al.  Pseudo-marginal metropolis light transport , 2015, SIGGRAPH Asia Technical Briefs.

[20]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[21]  Backward Ray Tracing Backward Ray Tracing , 1986 .

[22]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[23]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[24]  Jacopo Pantaleoni,et al.  Charted metropolis light transport , 2016, ACM Trans. Graph..

[25]  Toshiya Hachisuka,et al.  Multiplexed metropolis light transport , 2014, ACM Trans. Graph..

[26]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .