irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stress.

During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE acting as a global regulator confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shock. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stress. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

[1]  S. C. Park,et al.  Batch fermentation kinetics of sugar beet molasses by Zymomonas mobilis , 1991, Biotechnology and bioengineering.

[2]  L. Ingram,et al.  Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase , 1987, Journal of bacteriology.

[3]  L. Ingram,et al.  Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4 , 1985, Journal of bacteriology.

[4]  G. Stephanopoulos,et al.  Global transcription machinery engineering: a new approach for improving cellular phenotype. , 2007, Metabolic engineering.

[5]  A. Yamaguchi,et al.  Growth Phase-Dependent Expression of Drug Exporters in Escherichia coli and Its Contribution to Drug Tolerance , 2006, Journal of bacteriology.

[6]  L. Jønson,et al.  Genome‐wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress , 2006, Yeast.

[7]  L. Ingram,et al.  Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress , 2005, Applied and Environmental Microbiology.

[8]  T. Conway,et al.  Sequence and genetic organization of a Zymomonas mobilis gene cluster that encodes several enzymes of glucose metabolism , 1990, Journal of bacteriology.

[9]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[10]  P. Rogers,et al.  Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4(pZB5). , 2000, Applied biochemistry and biotechnology.

[11]  R. Hengge-aronis,et al.  Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase , 2002, Microbiology and Molecular Biology Reviews.

[12]  F. Vannier,et al.  Crystal structure of the IrrE protein, a central regulator of DNA damage repair in deinococcaceae. , 2009, Journal of molecular biology.

[13]  F. Tao,et al.  Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition , 2005 .

[14]  J. Kelly,et al.  The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. , 1986, European journal of biochemistry.

[15]  L. Ingram,et al.  Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc , 1989, Journal of bacteriology.

[16]  Katsumi Nakamura,et al.  Improved ethanol tolerance of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering , 2000, Biotechnology Letters.

[17]  Hyun Seok Park,et al.  The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4 , 2005, Nature Biotechnology.

[18]  Y. Hua,et al.  Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. , 2003, DNA repair.

[19]  Gregory Stephanopoulos,et al.  Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets , 2005, Nature Biotechnology.

[20]  Peter L. Rogers,et al.  Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis , 2002, Biotechnology Letters.

[21]  C. Patten,et al.  RpoS-Regulated Genes of Escherichia coli Identified by Random lacZ Fusion Mutagenesis , 2004, Journal of bacteriology.

[22]  Mikhail S. Gelfand,et al.  Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks , 2007, PloS one.

[23]  Yoshio Katakura,et al.  Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. , 2007, Journal of biotechnology.

[24]  K. Jung,et al.  Time-Dependent Proteome Alterations under Osmotic Stress during Aerobic and Anaerobic Growth in Escherichia coli , 2006, Journal of bacteriology.

[25]  J. Haber,et al.  Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination , 1980, Cell.

[26]  V. Wendisch,et al.  Genome-Wide Analysis of the General Stress Response Network in Escherichia coli: σS-Dependent Genes, Promoters, and Sigma Factor Selectivity , 2005, Journal of bacteriology.

[27]  Y. Hua,et al.  PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. , 2003, Biochemical and biophysical research communications.

[28]  Rui-Qiang,et al.  IrrE, a Global Regulator of Extreme Radiation Resistance in Deinococcus radiodurans, Enhances Salt Tolerance in Escherichia coli and Brassica napus , 2009, PloS one.

[29]  I. Mian,et al.  The IrrE Protein of Deinococcus radiodurans R1 Is a Novel Regulator of recA Expression , 2002, Journal of bacteriology.

[30]  M. Yamada,et al.  Magnesium Ions Improve Growth and Ethanol Production of Zymomonas mobilis under Heat or Ethanol Stress , 2007 .

[31]  P. Rogers,et al.  Characterization of a high-productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. , 2000, Applied biochemistry and biotechnology.

[32]  M. A. Typas,et al.  Chemical and UV mutagenesis in Zymomonas mobilis , 2004, Genetica.

[33]  G. Michel,et al.  Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis , 1986, Journal of bacteriology.

[34]  L. Ingram,et al.  Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium , 2007, Biotechnology Letters.

[35]  David J. Baumler,et al.  Enhancement of acid tolerance in Zymomonas mobilis by a proton-buffering peptide , 2006, Applied biochemistry and biotechnology.