Méthode de décomposition de domaines pour l'équation de Schrödinger. (Domain decomposition method for Schrödinger equation)
暂无分享,去创建一个
[1] Martin J. Gander,et al. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations , 2010, Networks Heterog. Media.
[2] Christophe Besse,et al. Absorbing boundary conditions for the one-dimensional Schrödinger equation with an exterior repulsive potential , 2009, J. Comput. Phys..
[3] Jérémie Szeftel,et al. Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation , 2007, Math. Comput..
[4] Christophe Besse,et al. A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .
[5] Christophe Besse,et al. Absorbing Boundary Conditions for General Nonlinear Schrödinger Equations , 2011, SIAM J. Sci. Comput..
[6] Pauline Klein. Construction et analyse de conditions aux limites artificielles pour des équations de Schrödinger avec potentiels et non linéarités , 2010 .
[7] David E. Keyes,et al. Additive Schwarz Methods for Hyperbolic Equations , 1998 .
[8] Xiao-Chuan Cai,et al. Additive Schwarz algorithms for parabolic convection-diffusion equations , 1991 .
[9] Yanzhi Zhang,et al. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..
[10] Jérémie Szeftel,et al. Optimized Schwarz Waveform Relaxation and Discontinuous Galerkin Time Stepping for Heterogeneous Problems , 2012, SIAM J. Numer. Anal..
[11] I-Liang Chern,et al. BOSE-EINSTEIN CONDENSATION , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.
[12] Martin J. Gander,et al. Best Robin Parameters for Optimized Schwarz Methods at Cross Points , 2012, SIAM J. Sci. Comput..
[13] Véronique Martin,et al. An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions , 2004 .
[14] Frédéric Nataf,et al. FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .
[15] Christophe Besse,et al. Absorbing Boundary Conditions for the Two-Dimensional Schrödinger Equation with an Exterior Potential. Part I: Construction and a priori Estimates , 2012 .
[16] Xavier Antoine,et al. Domain decomposition methods and high-order absorbing boundary conditions for the numerical simulation of the time dependent Schrödinger equation with ionization and recombination by intense electric field , 2014 .
[17] Martin J. Gander,et al. Schwarz Methods over the Course of Time , 2008 .
[18] M. Gander. Overlapping Schwarz Waveform Relaxation for Parabolic Problems , 1998 .
[19] M. Gander,et al. Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation , 1999 .
[20] Eric J. Kelmelis,et al. CULA: hybrid GPU accelerated linear algebra routines , 2010, Defense + Commercial Sensing.
[21] Martin J. Gander,et al. Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems , 2007, SIAM J. Numer. Anal..
[22] A. Durán,et al. The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .
[23] Christophe Besse,et al. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..
[24] Martin J. Gander,et al. Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..
[25] Hongxing Rui. Multiplicative Schwarz methods for parabolic problems , 2003, Appl. Math. Comput..
[26] Eric Blayo,et al. Optimized Schwarz Waveform Relaxation Algorithms with Nonconforming Time Discretization for Coupling Convection-diffusion Problems with Discontinuous Coefficients , 2007, CSE 2007.
[27] Xavier Antoine,et al. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions , 2014, Comput. Phys. Commun..
[28] Caroline Japhet,et al. Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d'Orde 2. , 1998 .
[29] Christophe Besse,et al. Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .
[30] Christophe Besse,et al. Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential , 2013, Numerische Mathematik.
[31] Luca Gerardo-Giorda,et al. New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..
[32] Martin J. Gander,et al. On the Applicability of Lions' Energy Estimates in the Analysis of Discrete Optimized Schwarz Methods with Cross Points , 2013, Domain Decomposition Methods in Science and Engineering XX.
[33] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[34] Laurence Halpern,et al. Optimized and Quasi-optimal Schwarz Waveform Relaxation for the One Dimensional Schrödinger Equation , 2010 .
[35] Weizhu Bao,et al. Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .
[36] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[37] Christophe Geuzaine,et al. A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation , 2012, J. Comput. Phys..
[38] Roland Glowinski,et al. A Domain Decomposition Method for the Acoustic Wave Equation with Discontinuous Coefficients and Grid Change , 1997 .
[39] Hanquan Wang,et al. Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..
[40] Christophe Besse,et al. Towards Accurate Artificial Boundary Conditions for Nonlinear PDEs Through Examples , 2009 .
[41] Herbert B. Keller,et al. Space-time domain decomposition for parabolic problems , 2002, Numerische Mathematik.
[42] Sébastien Loisel,et al. Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points , 2013, SIAM J. Numer. Anal..
[43] Martin J. Gander,et al. Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..
[44] Martin J. Gander,et al. A homographic best approximation problem with application to optimized Schwarz waveform relaxation , 2009, Math. Comput..
[45] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[46] Frédéric Nataf,et al. Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .
[47] B. Després,et al. Décomposition de domaine et problème de Helmholtz , 1990 .
[48] Christophe Besse,et al. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .
[49] Martin J. Gander,et al. Méthodes de décomposition de domaines - Extensions , 2016, Mathématiques.
[50] Martin J. Gander,et al. Optimized Schwarz Methods for Maxwell's Equations , 2006, SIAM J. Sci. Comput..
[51] Martin J. Gander,et al. Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..
[52] Christophe Besse,et al. A Relaxation Scheme for the Nonlinear Schrödinger Equation , 2004, SIAM J. Numer. Anal..
[53] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[54] Jérôme Jaffré,et al. Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations , 2013, SIAM J. Numer. Anal..
[55] Martin J. Gander,et al. A Schwarz Waveform Relaxation Method for Advection—Diffusion—Reaction Problems with Discontinuous Coefficients and Non-matching Grids , 2007 .