Cross-calibration of S-NPP VIIRS moderate resolution reflective solar bands against MODIS Aqua over dark water scenes.

The Visible Infrared Imaging Radiometer Suite (VIIRS) is being used to continue the record of Earth Science observations and data products produced routinely from National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. However, the absolute calibration of VIIRS's reflected solar bands is thought to be biased, leading to offsets in derived data products such as aerosol optical depth (AOD) as compared to when similar algorithms are applied to different sensors. This study presents a cross-calibration of these VIIRS bands against MODIS Aqua over dark water scenes, finding corrections to the NASA VIIRS Level 1 (version 2) reflectances between approximately +1 % and -7 % (dependent on band) are needed to bring the two into alignment (after accounting for expected differences resulting from different band spectral response functions), and indications of relative trending of up to ^0.35 % per year in some bands. The derived calibration gain corrections are also applied to the VIIRS reflectance and then used in an AOD retrieval, and are shown to decrease the bias and total error in AOD across the midvisible spectral region compared to the standard VIIRS NASA reflectance calibration. The resulting AOD bias characteristics are similar to those of NASA MODIS AOD data products, which is encouraging in terms of multisensor data continuity.

[1]  Jianwei Wei,et al.  Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance , 2015 .

[2]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[3]  Lorraine A. Remer,et al.  Preliminary evaluation of S‐NPP VIIRS aerosol optical thickness , 2014 .

[4]  Aisheng Wu,et al.  Sensitivity of Intercalibration Uncertainty of the CLARREO Reflected Solar Spectrometer Features , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Alexander Smirnov,et al.  A Pure Marine Aerosol Model, for Use in Remote Sensing Applications , 2012 .

[6]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[7]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[8]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[9]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[10]  Bongju Kim,et al.  Possible shift of spectral response function of the MODIS 6.8 μm water vapor channel causing a cold bias of 2–3 K , 2010 .

[11]  Robert E. Wolfe,et al.  Suomi NPP VIIRS prelaunch and on‐orbit geometric calibration and characterization , 2013 .

[12]  Z. Ahmad,et al.  The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type , 2016 .

[13]  Beat Schmid,et al.  Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies , 2016 .

[14]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[15]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[16]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[17]  B. Franz,et al.  Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry. , 2007, Applied optics.

[18]  Zhipeng Wang,et al.  Assessment of S-NPP VIIRS On-Orbit Radiometric Calibration and Performance , 2016, Remote. Sens..

[19]  Yujie Wang,et al.  Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements , 2014 .

[20]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[21]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[22]  Ole Tange,et al.  GNU Parallel: The Command-Line Power Tool , 2011, login Usenix Mag..

[23]  Edward C. Monahan,et al.  Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed , 1980 .

[24]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[25]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[26]  Brent N. Holben,et al.  Validation and expected error estimation of Suomi‐NPP VIIRS aerosol optical thickness and Ångström exponent with AERONET , 2016 .

[27]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[28]  C. O'Dowd,et al.  Marine aerosol production: a review of the current knowledge , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Xiaoxiong Xiong,et al.  MODIS Reflective Solar Bands On-Orbit Lunar Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Bryan A. Franz,et al.  Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Xiaoxiong Xiong,et al.  Products of the SNPP VIIRS SD Screen Transmittance and the SD BRDFs From Both Yaw Maneuver and Regular On-Orbit Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[32]  R. W. Austin The remote sensing of spectral radiance from below the ocean surface , 1974 .

[33]  Bryan A. Franz,et al.  Adjustments to the MODIS Terra radiometric calibration and polarization sensitivity in the 2010 reprocessing , 2011, Optical Engineering + Applications.

[34]  Roy G. Grainger,et al.  Atmospheric Measurement Techniques A sea surface reflectance model for ( A ) ATSR , and application to aerosol retrievals , 2010 .

[35]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[36]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[37]  Changyong Cao,et al.  Monitoring the NOAA Operational VIIRS RSB and DNB Calibration Stability Using Monthly and Semi-Monthly Deep Convective Clouds Time Series , 2016, Remote. Sens..

[38]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[39]  Amit Angal,et al.  Terra and Aqua moderate-resolution imaging spectroradiometer collection 6 level 1B algorithm , 2013 .

[40]  Xiong Liu,et al.  A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R , 2014 .

[41]  Xi Shao,et al.  Suomi NPP VIIRS sensor data record verification, validation, and long‐term performance monitoring , 2013 .

[42]  Bryan Lawrence,et al.  The GRAPE aerosol retrieval algorithm , 2009 .

[43]  Patrick Minnis,et al.  The Global Space-Based Inter-Calibration System , 2011 .

[44]  Leo H. Cohen,et al.  Relationship of oceanic whitecap coverage to wind speed and wind history , 2008 .

[45]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[46]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[47]  Amit Angal,et al.  Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands' Calibration Stability , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[48]  D. Antoine,et al.  Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function. , 2002, Applied optics.

[49]  Robert E. Holz,et al.  Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance , 2015 .

[50]  Gerhard Meister,et al.  Moderate-resolution imaging spectroradiometer ocean color polarization correction. , 2005, Applied optics.

[51]  Aisheng Wu,et al.  The Radiometric Stability and Scaling of Collection 6 Terra- and Aqua-MODIS VIS, NIR, and SWIR Spectral Bands , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[52]  B. Holben,et al.  Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data , 2012 .

[53]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[54]  G. Meister,et al.  Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency , 2015 .

[55]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[56]  P Koepke,et al.  Effective reflectance of oceanic whitecaps. , 1984, Applied optics.

[57]  Lorraine Remer,et al.  Effects of neglecting polarization on the MODIS aerosol retrieval over land , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Maria Tzortziou,et al.  Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements. , 2007, Applied optics.

[59]  C. Schueler,et al.  The NPOESS VIIRS Day/Night Visible Sensor , 2006 .

[60]  Peng Zhang,et al.  The Global Space-based Inter-Calibration System (GSICS) , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[61]  Ziauddin Ahmad,et al.  New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. , 2010, Applied optics.

[62]  Xiaoxiong Xiong,et al.  Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[63]  C. Cox Statistics of the sea surface derived from sun glitter , 1954 .

[64]  Robert E. Wolfe,et al.  NPP VIIRS early on-orbit geometric performance , 2012, Optics & Photonics - Optical Engineering + Applications.

[65]  Prieur,et al.  Analysis of variations in ocean color’ , 2000 .

[66]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[67]  R. Arnone,et al.  Radiometric calibration of ocean color satellite sensors using AERONET-OC data. , 2014, Optics express.

[68]  Lorraine Remer,et al.  A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[69]  Richard A. Frey,et al.  Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 , 2008 .

[70]  J. Herman,et al.  Assessment of the ultraviolet radiation field in ocean waters from space-based measurements and full radiative-transfer calculations. , 2005, Applied optics.

[71]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[72]  Changyong Cao,et al.  Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites , 2015 .

[73]  Changyong Cao,et al.  Assessment of VIIRS radiometric performance using vicarious calibration sites , 2014, Optics & Photonics - Optical Engineering + Applications.

[74]  N. C. Hsu,et al.  Implications of MODIS bow-tie distortion on aerosol optical depth retrievals, and techniques for mitigation , 2015 .

[75]  Xiaodong Zhang,et al.  Scattering by pure seawater: effect of salinity. , 2009, Optics express.

[76]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[77]  Lorraine A. Remer,et al.  Suomi‐NPP VIIRS aerosol algorithms and data products , 2013 .

[78]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[79]  Aisheng Wu,et al.  Radiometric Intercomparison betweenSuomi-NPPVIIRS andAquaMODIS Reflective Solar Bands Using Simultaneous Nadir Overpass in the Low Latitudes , 2013 .