Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures.

We demonstrate efficient terahertz (THz) modulation by coupling graphene strongly with a broadband THz metasurface device. This THz metasurface, made of periodic gold slit arrays, shows near unity broadband transmission, which arises from coherent radiation of the enhanced local-field in the slits. Utilizing graphene as an active load with tunable conductivity, we can significantly modify the local-field enhancement and strongly modulate the THz wave transmission. This hybrid device also provides a new platform for future nonlinear THz spectroscopy study of graphene.

[1]  Philip Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[2]  Mattias Beck,et al.  Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. , 2013, Nano letters.

[3]  Willie J Padilla,et al.  THz Wave Modulators: A Brief Review on Different Modulation Techniques , 2013 .

[4]  S. Sarma,et al.  Measurement of scattering rate and minimum conductivity in graphene. , 2007, Physical review letters.

[5]  Carlo Sirtori,et al.  Wave engineering with THz quantum cascade lasers , 2013, Nature Photonics.

[6]  Andrea Alù,et al.  Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .

[7]  Byungsoo Kang,et al.  Broadband Modulation of Terahertz Waves With Non-Resonant Graphene Meta-Devices , 2013, IEEE Transactions on Terahertz Science and Technology.

[8]  Xu Xie,et al.  Detection of broadband terahertz waves with a laser-induced plasma in gases. , 2006, Physical review letters.

[9]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[10]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[11]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[12]  Littlewood,et al.  Dynamic conductivity and coherence peak in YBa2Cu3O7 superconductors. , 1991, Physical review letters.

[13]  Xiang Zhang,et al.  Switching terahertz waves with gate-controlled active graphene metamaterials. , 2012, Nature materials.

[14]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .

[15]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[16]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.

[17]  T. Phan,et al.  Critical behavior and magnetic-entropy change of orthorhombic La0.7Ca0.2Sr0.1MnO3 , 2012 .

[18]  Gwyn P. Williams Filling the THz gap—high power sources and applications , 2006 .

[19]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[20]  David R. Smith,et al.  Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves , 2008 .

[21]  P. Leiderer,et al.  Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. , 2011, Physical review letters.

[22]  Roberto Morandotti,et al.  Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays , 2011 .

[23]  R. Kleiner,et al.  Superconducting emitters of THz radiation , 2013, Nature Photonics.

[24]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[25]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[26]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[27]  A. Zettl,et al.  Controlling graphene ultrafast hot carrier response from metal-like to semiconductor-like by electrostatic gating. , 2014, Nano letters.

[28]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[29]  M. Menu,et al.  Terahertz imaging for non-destructive evaluation of mural paintings , 2008 .

[30]  Ji-Hun Kang,et al.  Local capacitor model for plasmonic electric field enhancement , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[31]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[32]  Peter Uhd Jepsen,et al.  Non-resonant terahertz field enhancement in periodically arranged nanoslits , 2012 .

[33]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[34]  E. Linfield,et al.  Terahertz pulse imaging of ex vivo basal cell carcinoma. , 2003, The Journal of investigative dermatology.

[35]  Joerg Heber,et al.  Broadband Modulation of Light by Using an Electro-Optic Polymer , 2002, Science.

[36]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[37]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[38]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.