Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore

A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.

[1]  Peter Dittrich,et al.  Rule-based modeling and simulations of the inner kinetochore structure. , 2013, Progress in biophysics and molecular biology.

[2]  Taolue Chen,et al.  On the complexity of model checking interval-valued discrete time Markov chains , 2013, Inf. Process. Lett..

[3]  T. Hori,et al.  CENP‐T provides a structural platform for outer kinetochore assembly , 2013, The EMBO journal.

[4]  J. Pines,et al.  Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C–Cdc20 complex , 2013, The EMBO journal.

[5]  T. Hazbun,et al.  Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore , 2013, Nature Cell Biology.

[6]  Tomas Veloz,et al.  Cycles and the Qualitative Evolution of Chemical Systems , 2012, PloS one.

[7]  D. Morgan,et al.  The APC/C subunit Mnd2/Apc15 promotes Cdc20 autoubiquitination and spindle assembly checkpoint inactivation. , 2012, Molecular cell.

[8]  H. Leonhardt,et al.  Step-Wise Assembly, Maturation and Dynamic Behavior of the Human CENP-P/O/R/Q/U Kinetochore Sub-Complex , 2012, PloS one.

[9]  Marta Z. Kwiatkowska,et al.  Pareto Curves for Probabilistic Model Checking , 2012, ATVA.

[10]  H. Koeppl,et al.  Spatial Simulations in Systems Biology: From Molecules to Cells , 2012, International journal of molecular sciences.

[11]  Stefan Westermann,et al.  CENP-T proteins are conserved centromere receptors of the Ndc80 complex , 2012, Nature Cell Biology.

[12]  Tobias Nipkow,et al.  Software Safety and Security - Tools for Analysis and Verification , 2012, Software Safety and Security.

[13]  A. Jeyaprakash,et al.  Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. , 2012, Molecular cell.

[14]  P. Dittrich,et al.  A dynamical model of the spindle position checkpoint , 2012 .

[15]  Hongbin Sun,et al.  Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting , 2012, Proceedings of the National Academy of Sciences.

[16]  G. Drummen,et al.  Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM , 2012, Molecules.

[17]  A. Musacchio,et al.  Structural analysis reveals features of the spindle checkpoint kinase Bub1–kinetochore subunit Knl1 interaction , 2012, The Journal of cell biology.

[18]  Karen E Gascoigne,et al.  CENP-T-W-S-X Forms a Unique Centromeric Chromatin Structure with a Histone-like Fold , 2012, Cell.

[19]  Marta Z. Kwiatkowska,et al.  Advances in Probabilistic Model Checking , 2012, Software Safety and Security.

[20]  Elliot L Elson,et al.  Fluorescence correlation spectroscopy: past, present, future. , 2011, Biophysical journal.

[21]  T. Blundell,et al.  Characterization of Spindle Checkpoint Kinase Mps1 Reveals Domain with Functional and Structural Similarities to Tetratricopeptide Repeat Motifs of Bub1 and BubR1 Checkpoint Kinases* , 2011, The Journal of Biological Chemistry.

[22]  Stephen S. Taylor,et al.  BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner , 2011, Journal of Cell Science.

[23]  Miguel Rocha,et al.  Modeling formalisms in Systems Biology , 2011, AMB Express.

[24]  Christopher W Carroll,et al.  Dynamics of CENP-N kinetochore binding during the cell cycle , 2011, Journal of Cell Science.

[25]  T. Blundell,et al.  Structure of a Blinkin-BUBR1 Complex Reveals an Interaction Crucial for Kinetochore-Mitotic Checkpoint Regulation via an Unanticipated Binding Site , 2011, Structure.

[26]  J. Widengren,et al.  Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores. , 2011, The journal of physical chemistry. B.

[27]  James R Faeder,et al.  Toward a comprehensive language for biological systems , 2011, BMC Biology.

[28]  Hiroshi Kimura,et al.  Crystal structure of the human centromeric nucleosome containing CENP-A , 2011, Nature.

[29]  T. Fukagawa,et al.  The ABCs of CENPs , 2011, Chromosoma.

[30]  Peter Dittrich,et al.  Fragments and Chemical Organisations , 2011, SASB.

[31]  J. Pines,et al.  How APC/C–Cdc20 changes its substrate specificity in mitosis , 2011, Nature Cell Biology.

[32]  Arieh Warshel,et al.  Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. , 2011, Annual review of physical chemistry.

[33]  Kyung S. Lee,et al.  Mammalian Polo-like Kinase 1-dependent Regulation of the PBIP1-CENP-Q Complex at Kinetochores* , 2011, The Journal of Biological Chemistry.

[34]  D. Glover,et al.  CENP-C Is a Structural Platform for Kinetochore Assembly , 2011, Current Biology.

[35]  E. Nogales,et al.  Direct Binding of Cenp-C to the Mis12 Complex Joins the Inner and Outer Kinetochore , 2011, Current Biology.

[36]  B. E. Black,et al.  Epigenetic Centromere Propagation and the Nature of CENP-A Nucleosomes , 2011, Cell.

[37]  M. Yanagida,et al.  Protein Interaction Domain Mapping of Human Kinetochore Protein Blinkin Reveals a Consensus Motif for Binding of Spindle Assembly Checkpoint Proteins Bub1 and BubR1 , 2011, Molecular and Cellular Biology.

[38]  Bin Hu,et al.  Hierarchical graphs for rule-based modeling of biochemical systems , 2011, BMC Bioinformatics.

[39]  T. Dansen,et al.  Release of Mps1 from kinetochores is crucial for timely anaphase onset , 2010, The Journal of cell biology.

[40]  H. Stark,et al.  The MIS12 complex is a protein interaction hub for outer kinetochore assembly , 2010, The Journal of cell biology.

[41]  Peter Dittrich,et al.  Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems , 2010, Int. Conf. on Membrane Computing.

[42]  Christopher W Carroll,et al.  Dual recognition of CENP-A nucleosomes is required for centromere assembly , 2010, The Journal of cell biology.

[43]  Y. Dalal,et al.  Down the rabbit hole of centromere assembly and dynamics. , 2010, Current opinion in cell biology.

[44]  F. Ciccarelli,et al.  Structural analysis of the RZZ complex reveals common ancestry with multisubunit vesicle tethering machinery. , 2010, Structure.

[45]  R. Durbin,et al.  Systematic Analysis of Human Protein Complexes Identifies Chromosome Segregation Proteins , 2010, Science.

[46]  D. Compton,et al.  Mechanisms of Chromosomal Instability , 2010, Current Biology.

[47]  Thomas Hinze,et al.  Rule-based spatial modeling with diffusing, geometrically constrained molecules , 2010, BMC Bioinformatics.

[48]  James R. Faeder,et al.  Compartmental rule-based modeling of biochemical systems , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[49]  K. Wood,et al.  Kinetic analysis of Mad2-Cdc20 formation: conformational changes in Mad2 are catalyzed by a C-Mad2-ligand complex. , 2009, Biochemistry.

[50]  Peter Dittrich,et al.  The role of localization in the operation of the mitotic spindle assembly checkpoint , 2009, Cell cycle.

[51]  A. Musacchio,et al.  The life and miracles of kinetochores , 2009, The EMBO journal.

[52]  D. Cleveland,et al.  Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis , 2009, Nature Reviews Molecular Cell Biology.

[53]  T. Hori,et al.  The CENP-S complex is essential for the stable assembly of outer kinetochore structure , 2009, The Journal of cell biology.

[54]  S. Diekmann,et al.  Acceptor-photobleaching FRET analysis of core kinetochore and NAC proteins in living human cells , 2009, European Biophysics Journal.

[55]  Pumin Zhang,et al.  Loss of spindle assembly checkpoint–mediated inhibition of Cdc20 promotes tumorigenesis in mice , 2009, The Journal of cell biology.

[56]  Stefan Kemmler,et al.  Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling , 2009, The EMBO journal.

[57]  Vincent Danos,et al.  Internal coarse-graining of molecular systems , 2009, Proceedings of the National Academy of Sciences.

[58]  Christopher W Carroll,et al.  Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N , 2009, Nature Cell Biology.

[59]  Karl Mechtler,et al.  Structure of the Anaphase-Promoting Complex/Cyclosome Interacting with a Mitotic Checkpoint Complex , 2009, Science.

[60]  A. Krutchinsky,et al.  Unifying Fluorescence Microscopy and Mass Spectrometry for Studying Protein Complexes in Cells* , 2009, Molecular & Cellular Proteomics.

[61]  D. Cleveland,et al.  Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. , 2009, Developmental cell.

[62]  Andrea Ciliberto,et al.  The Influence of Catalysis on Mad2 Activation Dynamics , 2009, PLoS biology.

[63]  Julie M. Sahalie,et al.  An experimentally derived confidence score for binary protein-protein interactions , 2008, Nature Methods.

[64]  James R Faeder,et al.  Rule-based modeling of biochemical systems with BioNetGen. , 2009, Methods in molecular biology.

[65]  Heng Liu,et al.  The RZZ complex and the spindle assembly checkpoint. , 2009, Cell structure and function.

[66]  Peter Dittrich,et al.  In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly , 2009, Biosyst..

[67]  Lawrence B. Holder,et al.  Graph-Based Data Mining in Dynamic Networks: Empirical Comparison of Compression-Based and Frequency-Based Subgraph Mining , 2008, 2008 IEEE International Conference on Data Mining Workshops.

[68]  Bruce F. McEwen,et al.  CCAN Makes Multiple Contacts with Centromeric DNA to Provide Distinct Pathways to the Outer Kinetochore , 2008, Cell.

[69]  Angelika Amon,et al.  Aneuploidy Affects Proliferation and Spontaneous Immortalization in Mammalian Cells , 2008, Science.

[70]  G. Kops,et al.  Preventing aneuploidy: the contribution of mitotic checkpoint proteins. , 2008, Biochimica et biophysica acta.

[71]  Ernst Dieter Gilles,et al.  Exact model reduction of combinatorial reaction networks , 2008, BMC Systems Biology.

[72]  Peter Dittrich,et al.  Dynamics of component exchange at PML nuclear bodies , 2008, Journal of Cell Science.

[73]  Thomas Huber,et al.  Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors. , 2008, Journal of molecular biology.

[74]  E. Zaitseva,et al.  Structural Impact of the E113Q Counterion Mutation on the Activation and Deactivation Pathways of the G Protein-coupled Receptor Rhodopsin , 2008, Journal of molecular biology.

[75]  Peter Dittrich,et al.  Mad2 binding is not sufficient for complete Cdc20 sequestering in mitotic transition control (an in silico study). , 2008, Biophysical chemistry.

[76]  P. Dittrich,et al.  In-Silico Modeling of the Mitotic Spindle Assembly Checkpoint , 2008, PloS one.

[77]  Vincent Danos,et al.  Abstract Interpretation of Cellular Signalling Networks , 2008, VMCAI.

[78]  S. Diekmann,et al.  Assembly of the Inner Kinetochore Proteins CENP‐A and CENP‐B in Living Human Cells , 2008, Chembiochem : a European journal of chemical biology.

[79]  S. Diekmann,et al.  Escherichia coli low-copy-number plasmid R1 centromere parC forms a U-shaped complex with its binding protein ParR , 2007, Nucleic acids research.

[80]  A. Desai,et al.  Molecular architecture of the kinetochore–microtubule interface , 2008, Nature Reviews Molecular Cell Biology.

[81]  P. Dittrich,et al.  Stochastic effects in a compartmental model for mitotic checkpoint regulation , 2007, J. Integr. Bioinform..

[82]  Mitsuhiro Yanagida,et al.  Human Blinkin/AF15q14 is required for chromosome alignment and the mitotic checkpoint through direct interaction with Bub1 and BubR1. , 2007, Developmental cell.

[83]  Michael Ederer,et al.  Reduced modeling of signal transduction – a modular approach , 2007, BMC Bioinformatics.

[84]  E. Salmon,et al.  The spindle-assembly checkpoint in space and time , 2007, Nature Reviews Molecular Cell Biology.

[85]  S. Harrison,et al.  Structural analysis of Bub3 interactions in the mitotic spindle checkpoint , 2007, Proceedings of the National Academy of Sciences.

[86]  Bernard M. E. Moret,et al.  NetGen: generating phylogenetic networks with diploid hybrids , 2006, Bioinform..

[87]  R. Goorha,et al.  Spindle checkpoint function requires Mad2-dependent Cdc20 binding to the Mad3 homology domain of BubR1. , 2006, Experimental cell research.

[88]  Bong-Kwan Phee,et al.  Identification of phytochrome‐interacting protein candidates in Arabidopsis thaliana by co‐immunoprecipitation coupled with MALDI‐TOF MS , 2006, Proteomics.

[89]  Zeno Földes-Papp,et al.  What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy. , 2006, Experimental and molecular pathology.

[90]  Tetsuya Hori,et al.  The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres , 2006, Nature Cell Biology.

[91]  Boris N Kholodenko,et al.  Trading the micro-world of combinatorial complexity for the macro-world of protein interaction domains. , 2006, Bio Systems.

[92]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[93]  Julio Saez-Rodriguez,et al.  A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks , 2006, BMC Bioinformatics.

[94]  D. Cimini,et al.  Aneuploidy: a matter of bad connections. , 2005, Trends in cell biology.

[95]  R. Karess,et al.  Recruitment of Mad2 to the Kinetochore Requires the Rod/Zw10 Complex , 2005, Current Biology.

[96]  Eshel Ben-Jacob,et al.  Evaluating putative mechanisms of the mitotic spindle checkpoint. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Yates,et al.  ZW10 links mitotic checkpoint signaling to the structural kinetochore , 2005, The Journal of cell biology.

[98]  William S. Hlavacek,et al.  Graphical rule-based representation of signal-transduction networks , 2005, SAC '05.

[99]  Andrea Musacchio,et al.  The Mad1/Mad2 Complex as a Template for Mad2 Activation in the Spindle Assembly Checkpoint , 2005, Current Biology.

[100]  Maikun Teng,et al.  Human Zwint-1 Specifies Localization of Zeste White 10 to Kinetochores and Is Essential for Mitotic Checkpoint Signaling* , 2004, Journal of Biological Chemistry.

[101]  William S. Hlavacek,et al.  BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains , 2004, Bioinform..

[102]  Osamu Iwasaki,et al.  A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1 , 2004, Nature Cell Biology.

[103]  E. Salmon,et al.  The dynamic kinetochore-microtubule interface , 2004, Journal of Cell Science.

[104]  S. Jaspersen,et al.  The budding yeast spindle pole body: structure, duplication, and function. , 2004, Annual review of cell and developmental biology.

[105]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[106]  John R Yates,et al.  A conserved protein network controls assembly of the outer kinetochore and its ability to sustain tension. , 2004, Genes & development.

[107]  Hongtao Yu,et al.  Identification of Two Novel Components of the Human NDC80 Kinetochore Complex*[boxs] , 2004, Journal of Biological Chemistry.

[108]  H. Masumoto,et al.  CENP-B Interacts with CENP-C Domains Containing Mif2 Regions Responsible for Centromere Localization* , 2004, Journal of Biological Chemistry.

[109]  M. Winey,et al.  A Field Guide to the Mps1 Family of Protein Kinases , 2004, Cell cycle.

[110]  J. Shabanowitz,et al.  The Vertebrate Ndc80 Complex Contains Spc24 and Spc25 Homologs, which Are Required to Establish and Maintain Kinetochore-Microtubule Attachment , 2004, Current Biology.

[111]  James R Faeder,et al.  The complexity of complexes in signal transduction , 2003, Biotechnology and bioengineering.

[112]  Stuart Brand,et al.  A new quantitative optical biosensor for protein characterisation. , 2003, Biosensors & bioelectronics.

[113]  M Walid Qoronfleh,et al.  Improved immunomatrix methods to detect protein:protein interactions. , 2003, Journal of biochemical and biophysical methods.

[114]  Peter F. Stadler,et al.  A Graph-Based Toy Model of Chemistry , 2003, J. Chem. Inf. Comput. Sci..

[115]  G. Leung,et al.  Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. , 2003, Molecular biology of the cell.

[116]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[117]  E. Nigg,et al.  Role of Hec1 in Spindle Checkpoint Signaling and Kinetochore Recruitment of Mad1/Mad2 , 2002, Science.

[118]  Rey-Huei Chen,et al.  Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. , 2002, Molecular biology of the cell.

[119]  G. Fang,et al.  Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. , 2002, Molecular biology of the cell.

[120]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[121]  Hongtao Yu,et al.  The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. , 2002, Molecular cell.

[122]  Jean-Louis Giavitto,et al.  Pattern-matching and rewriting rules for group indexed data structures , 2002, SIGP.

[123]  K. Helin,et al.  Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint , 2001, The EMBO journal.

[124]  G. Chan,et al.  Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2 , 2001, The Journal of cell biology.

[125]  A. Valencia,et al.  Similarity of phylogenetic trees as indicator of protein-protein interaction. , 2001, Protein engineering.

[126]  Emma Lees,et al.  Identification of an Overlapping Binding Domain on Cdc20 for Mad2 and Anaphase-Promoting Complex: Model for Spindle Checkpoint Regulation , 2001, Molecular and Cellular Biology.

[127]  Xianshu Wang,et al.  The Mitotic Checkpoint Protein hBUB3 and the mRNA Export Factor hRAE1 Interact with GLE2p-binding Sequence (GLEBS)-containing Proteins* , 2001, The Journal of Biological Chemistry.

[128]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[129]  Leslie Wilson,et al.  Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Anna Shevchenko,et al.  The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control , 2001, The EMBO journal.

[131]  J. Ziegler,et al.  Artificial Chemistries-A Review , 2001 .

[132]  Daniel A Starr,et al.  Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores , 2000, Nature Cell Biology.

[133]  B. Snel,et al.  STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. , 2000, Nucleic acids research.

[134]  T. J. Keating,et al.  Immunostructural evidence for the template mechanism of microtubule nucleation , 2000, Nature Cell Biology.

[135]  Daniel A Starr,et al.  HZwint-1, a novel human kinetochore component that interacts with HZW10. , 2000, Journal of cell science.

[136]  D. Agard,et al.  Structure of the γ-tubulin ring complex: a template for microtubule nucleation , 2000, Nature Cell Biology.

[137]  Yixian Zheng,et al.  A new function for the γ -tubulin ring complex as a microtubule minus-end cap , 2000, Nature Cell Biology.

[138]  D. Agard,et al.  Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. , 2000, Nature cell biology.

[139]  Y. Zheng,et al.  A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. , 2000, Nature cell biology.

[140]  A. Murray,et al.  The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. , 1999, Molecular biology of the cell.

[141]  O. Stemmann,et al.  Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Richard N. Day,et al.  Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. , 1999, Methods in cell biology.

[143]  Daniel A Starr,et al.  ZW10 Helps Recruit Dynactin and Dynein to the Kinetochore , 1998, The Journal of cell biology.

[144]  Stephen S. Taylor,et al.  The Human Homologue of Bub3 Is Required for Kinetochore Localization of Bub1 and a Mad3/Bub1-related Protein Kinase , 1998, The Journal of cell biology.

[145]  Kim Nasmyth,et al.  The Polo‐like kinase Cdc5p and the WD‐repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae , 1998, The EMBO journal.

[146]  Gérard Assayag,et al.  Computer Assisted Composition today. , 1998 .

[147]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[148]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[149]  M. Kirschner,et al.  A 20s complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B , 1995, Cell.

[150]  A. Hershko,et al.  The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. , 1995, Molecular biology of the cell.

[151]  A. Murray,et al.  A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts , 1994, Cell.

[152]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[153]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[154]  D. Koshland,et al.  The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes , 1991, Molecular and cellular biology.

[155]  Andrew W. Murray,et al.  Feedback control of mitosis in budding yeast , 1991, Cell.

[156]  B. Roberts,et al.  S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function , 1991, Cell.

[157]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[158]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[159]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[160]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[161]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .