Judd–Ofelt analysis and transition probabilities of Er3+ doped KY1−x−yGdxLuy(WO4)2 crystals

Abstract In this work the transition probabilities, radiative lifetimes and branching ratios of Er 3+ ions in KY 1− x − y Gd x Lu y (WO 4 ) 2 crystals have been determined. With this aim, Er 3+ doped KY 1− x − y Gd x Lu y (WO 4 ) 2 crystals have been grown by means of the high temperature Top-Seeded Solution Growth. A spectroscopic analysis of Er 3+ ions in this crystal has been performed following anisotropic Judd–Ofelt analysis to obtain basic spectroscopic properties. A quantum efficiency over 97% has been determined for the 4 I 13/2 → 4 I 15/2 transition, indicating that this material is adequate for the development of lasers and amplifiers working in the third telecommunication window.

[1]  T. Jensen,et al.  CW laser performance of Yb and Er,Yb doped tungstates , 1997 .

[2]  Xavier Mateos,et al.  Continuous-wave and Q-switched Tm-doped KY(WO4)2 planar waveguide laser at 1.84 µm. , 2011, Optics express.

[3]  J. Hellström,et al.  Fluorescence dynamics and rate equation analysis in Er3+ and Yb3+ doped double tungstates. , 2006, Applied optics.

[4]  M. J. Weber,et al.  Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate , 1973 .

[5]  M. Pollnau,et al.  Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  F. Cussó,et al.  Polarization effects on the line-strength calculations of Er3+-doped LiNbO3 , 1996 .

[7]  M. Aguiló,et al.  Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)2 single crystals , 1999 .

[8]  F. Cussó,et al.  Judd–Ofelt analysis of powder samples: LiNbO3:Er3+ submicron-sized particles as a model case , 2015 .

[9]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[10]  K Wörhoff,et al.  Microstructured KY(WO(4))(2):Gd(3+), Lu(3+), Yb(3+) channel waveguide laser. , 2010, Optics express.

[11]  U. Griebner,et al.  Continuous-wave laser oscillation of Yb/sup 3+/ in monoclinic KLu(WO/sub 4/)/sub 2/ , 2004, IEEE Journal of Quantum Electronics.

[12]  F. Güell,et al.  Sensitization ofEr3+emission at1.5μmbyYb3+inKYb(WO4)2single crystals , 2002 .

[13]  D. Jaque,et al.  Waveguide lasers based on dielectric materials , 2012 .

[14]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[15]  M. Schuurmans,et al.  On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions , 1983 .

[16]  C. Zaldo,et al.  Emission cross sections and spectroscopy of Ho/sup 3+/ laser channels in KGd(WO/sub 4/)/sub 2/ single crystal , 2002 .

[17]  M. Aguiló,et al.  Ln3+:KLu(WO4)2/KLu(WO4)2 epitaxial layers: Crystal growth and physical characterisation , 2008 .

[18]  H. Dai,et al.  Polarized absorption spectrum and intensity analysis of trivalent neodymium in sodium β″ alumina , 1991 .

[19]  R. Reisfeld Glass Lasers and Solar Applications , 1987 .

[20]  G. S. Murugan,et al.  Analysis of confinement effects on microstructured Ln 3+ :KY 1-x-y Gd x Lu y (WO 4 ) 2 waveguides , 2011 .

[21]  Xavier Mateos,et al.  Epitaxial Growth of Lattice Matched KY1−x−yGdxLuy(WO4)2 Thin Films on KY(WO4)2 Substrates for Waveguiding Applications , 2009 .

[22]  Chen Xueyuan,et al.  Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements , 1997 .

[23]  Ken-ichi Ueda,et al.  New Crystalline Lasers on the Base of Monoclinic KR(W04)2:Ln3+ Tungstates (R=Y and Ln) , 1997 .

[24]  B. Judd Hypersensitive Transitions in Rare‐Earth Ions , 1966 .

[25]  G. Huber,et al.  Fluorescence dynamics, excited-state absorption, and stimulated emission of Er 3+ in KY(WO 4 ) 2 , 1998 .

[26]  A. Kaminskii,et al.  Polarized Raman spectra of the oriented NaY(WO4)2 and KY(WO4)2 single crystals , 2000 .

[27]  F. Cussó,et al.  Concentration Dependence of the 1.5 μm Emission Lifetime of Er3+ in LiNbO3 by Radiation Trapping , 1998 .

[28]  J. Gavaldà,et al.  Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+ , 2006 .

[29]  M. J. Weber,et al.  Probabilities for Radiative and Nonradiative Decay of Er 3 + in La F 3 , 1967 .

[30]  H. Moos,et al.  MULTIPHONON ORBIT-LATTICE RELAXATION OF EXCITED STATES OF RARE-EARTH IONS IN CRYSTALS. , 1968 .

[31]  V. Pašiškevičius,et al.  Crystal growth, spectroscopic characterization, and eye-safe laser operation of erbium- and ytterbium-codoped KLu(WO4)2. , 2008, Applied optics.

[32]  Xavier Mateos,et al.  Mirrorless buried waveguide laser in monoclinic double tungstates fabricated by a novel combination of ion milling and liquid phase epitaxy. , 2010, Optics express.