Automated Geometric Theorem Proving, Clifford Bracket Algebra and Clifford Expansions
暂无分享,去创建一个
[1] David Hestenes,et al. Generalized homogeneous coordinates for computational geometry , 2001 .
[2] Henry Crapo,et al. Automatic Proving of Geometric Theorems , 1995 .
[3] A. Brini,et al. Remarks on invariant geometric calculus. Cayley-Grassmann algebras and geometric Clifford algebras , 2001 .
[4] Eduardo R. Caianiello,et al. Combinatorics and renormalization in quantum field theory , 1973 .
[5] B. Kutzler,et al. On the Application of Buchberger's Algorithm to Automated Geometry Theorem Proving , 1986, J. Symb. Comput..
[6] Bernd Sturmfels,et al. Grobner Bases and Invariant Theory , 1989 .
[7] Bertfried Fauser. A Treatise on Quantum Clifford Algebras , 2002 .
[8] Gerald Sommer,et al. Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.
[9] D. Hestenes,et al. Clifford Algebra to Geometric Calculus , 1984 .
[10] Bernd Sturmfels,et al. On the Synthetic Factorization of Projectively Invariant Polynomials , 1991, J. Symb. Comput..
[11] Dongming Wang. Geometric Reasoning with Geometric Algebra , 2001 .
[12] N. White,et al. The bracket ring of a combinatorial geometry. I , 1975 .
[13] Hongbo Li,et al. Automated Theorem Proving in the Homogeneous Model with Clifford Bracket Algebra , 2002 .
[14] Neil White,et al. Invariant Methods in Discrete and Computational Geometry , 1995, Springer Netherlands.
[15] Gian-Carlo Rota,et al. On the Exterior Calculus of Invariant Theory , 1985 .
[16] L. Yaglom. Felix Klein and Sophus Lie , 1988 .