Finding microarray genes using GO ontology

Bioinformatics is the science of managing, mining and interpreting information from biological sequences and structures. DNA Microarrays, also known as gene chips, provide an effective tool for monitoring and profiling gene expression patterns by measuring the expression levels of thousands of genes simultaneously. Clustering is a popular technique for microarray data to finding groups of genes with similar functionalities based on GO Ontology. In this paper, data mining technique, clustering is used on microarray data to group genes with similar functionalities based on Go ontology. Gene Ontology is used to provide external validation for the clusters to determine if the genes in a cluster belong to a specific Biological Process, Cellular Component and Molecular Function. A functionally meaningful cluster contains many genes that are annotated to a specific GO terms. To prove that each of these new cluster sets reveal biological associations that were not apparent from clustering the original gene expression data.

[1]  Jiong Yang,et al.  Microarray data mining using landmark gene-guided clustering , 2008, BMC Bioinformatics.

[2]  Francisco Azuaje,et al.  An integrated tool for microarray data clustering and cluster validity assessment , 2004, SAC '04.

[3]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[4]  Claude Pasquier,et al.  THEA: ontology-driven analysis of microarray data , 2004, Bioinform..

[5]  Babak Akhgar,et al.  Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System , 2008 .

[6]  A S Taraskina,et al.  THE MODIFIED FUZZY C-MEANS METHOD FOR CLUSTERING OF MICROARRAY DATA , 2006 .

[7]  Purvesh Khatri,et al.  Ontological analysis of gene expression data: current tools, limitations, and open problems , 2005, Bioinform..

[8]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[9]  Sumeet Dua,et al.  Data Mining for Bioinformatics , 2012 .

[10]  W. Wong,et al.  Functional annotation and network reconstruction through cross-platform integration of microarray data , 2005, Nature Biotechnology.

[11]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[12]  H. Ki Microarray Data Analysis Methods Comparison : a Review Biochemistry 218 Project , 2022 .

[13]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[14]  F. Hanaoka,et al.  Cell Cycle-dependent Proteolysis and Phosphorylation of Human Mcm10* , 2001, The Journal of Biological Chemistry.

[15]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[16]  Chodziwadziwa Whiteson Kabudula,et al.  AIMS ESSAY 2006 Overview of Tools for Microarray Data Analysis and Comparison Analysis , 2006 .

[17]  Raj Acharya,et al.  An information theoretic approach for analyzing temporal patterns of gene expression , 2003, Bioinform..

[18]  Wei Pan,et al.  Combining gene annotations and gene expression data in model-based clustering: weighted method. , 2006, Omics : a journal of integrative biology.

[19]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[20]  B. Dyson,et al.  Running head: , 2019 .

[21]  Gene Ontology Consortium The Gene Ontology (GO) database and informatics resource , 2003 .

[22]  P. Khatri,et al.  Global functional profiling of gene expression. , 2003, Genomics.

[23]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..