Error bounds and metric subregularity

Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal and subdifferential slopes.

[1]  I. Ekeland On the variational principle , 1974 .

[2]  A. Ioffe Regular points of Lipschitz functions , 1979 .

[3]  A. Ioffe,et al.  ON SUBDIFFERENTIABILITY SPACES , 1983 .

[4]  Marián Fabian,et al.  Sub differentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss , 1989 .

[5]  S. Simons,et al.  The least slope of a convex function and the maximal monotonicity of its subdifferential , 1991 .

[6]  Andreas H. Hamel,et al.  Remarks to an equivalent formulation of ekeland’s variational principle , 1994 .

[7]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[8]  Jane J. Ye,et al.  New Uniform Parametric Error Bounds , 1998 .

[9]  Yu. S. Ledyaev,et al.  Implicit Multifunction Theorems , 1998 .

[10]  ABDERRAHIM JOURANI,et al.  Hoffman's Error Bound, Local Controllability, and Sensitivity Analysis , 2000, SIAM J. Control. Optim..

[11]  A. Ioffe Metric regularity and subdifferential calculus , 2000 .

[12]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[13]  D. Azé,et al.  On the Sensitivity Analysis of Hoffman Constants for Systems of Linear Inequalities , 2002, SIAM J. Optim..

[14]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[15]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[16]  Jane J. Ye,et al.  On error bounds for lower semicontinuous functions , 2002, Math. Program..

[17]  A. Kruger On Fréchet Subdifferentials , 2003 .

[18]  D. Azé,et al.  A survey on error bounds for lower semicontinuous functions , 2003 .

[19]  Alexander D. Ioffe On robustness of the regularity property of maps , 2003 .

[20]  Zili Wu Equivalent formulations of Ekeland's variational principle , 2003 .

[21]  René Henrion,et al.  Sufficient Conditions for Error Bounds and Applications , 2004 .

[22]  Jane J. Ye,et al.  First-Order and Second-Order Conditions for Error Bounds , 2003, SIAM J. Optim..

[23]  Michel Théra,et al.  Error Bounds and Implicit Multifunction Theorem in Smooth Banach Spaces and Applications to Optimization , 2004 .

[24]  Jean-Noël Corvellec,et al.  Characterizations of error bounds for lower semicontinuous functions on metric spaces , 2004 .

[25]  A. Uderzo,et al.  Fréchet quasidifferential calculus with applications to metric regularity of continuous maps , 2005 .

[26]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[27]  René Henrion,et al.  Calmness of constraint systems with applications , 2005, Math. Program..

[28]  Diethard Klatte,et al.  Nonsmooth Equations in Optimization: "Regularity, Calculus, Methods And Applications" , 2006 .

[29]  F. Giannessi Variational Analysis and Generalized Differentiation , 2006 .

[30]  Roberto Lucchetti,et al.  Convexity and well-posed problems , 2006 .

[31]  Diethard Klatte,et al.  Stability of inclusions: characterizations via suitable Lipschitz functions and algorithms , 2006 .

[32]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[33]  D. Azé,et al.  A Unified Theory for Metric Regularity of Multifunctions , 2006 .

[34]  A. Uderzo,et al.  Convex Difference Criteria for the Quantitative Stability of Parametric Quasidifferentiable Systems , 2007 .

[35]  A. D. Ioffe A Sard theorem for tame set-valued mappings , 2007 .

[36]  Alexander D. Ioffe On regularity estimates for mappings between embedded manifolds , 2007 .

[37]  K. G. Murty,et al.  Nonsmooth optimization , 2007 .

[38]  Alexander D. Ioffe,et al.  On Metric and Calmness Qualification Conditions in Subdifferential Calculus , 2008 .

[39]  Huynh van Ngai,et al.  Error Bounds in Metric Spaces and Application to the Perturbation Stability of Metric Regularity , 2008, SIAM J. Optim..

[40]  Alexander D. Ioffe On regularity concepts in variational analysis , 2008 .

[41]  Jean-Noël Corvellec,et al.  Nonlinear error bounds for lower semicontinuous functions on metric spaces , 2008, Math. Program..

[42]  On Implicit Multifunction Theorems , 2008 .

[43]  Riccarda Rossi,et al.  Global attractors for gradient flows in metric spaces , 2009, 0911.1590.

[44]  Huynh van Ngai,et al.  Error bounds for systems of lower semicontinuous functions in Asplund spaces , 2008, Math. Program..

[45]  A. D. Ioffe,et al.  An Invitation to Tame Optimization , 2008, SIAM J. Optim..

[46]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings: A View from Variational Analysis , 2009 .

[47]  Bernd Kummer,et al.  Inclusions in general spaces: Hoelder stability, solution schemes and Ekeland's principle , 2009 .

[48]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[49]  Jean-Noël Corvellec,et al.  On some variational properties of metric spaces , 2009 .

[50]  A. Kruger,et al.  Error Bounds: Necessary and Sufficient Conditions , 2010 .

[51]  A. Uderzo,et al.  Exact penalty functions and calmness for mathematical programming under nonlinear perturbations , 2010 .

[52]  Xi Yin Zheng,et al.  Metric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces , 2010, SIAM J. Optim..

[53]  Guoyin Li On the Asymptotically Well Behaved Functions and Global Error Bound for Convex Polynomials , 2010, SIAM J. Optim..

[54]  A. Kruger,et al.  ERROR BOUNDS FOR VECTOR-VALUED FUNCTIONS ON METRIC SPACES , 2011 .

[55]  René Henrion,et al.  About error bounds in metric spaces , 2011, OR.

[56]  Helmut Gfrerer,et al.  First Order and Second Order Characterizations of Metric Subregularity and Calmness of Constraint Set Mappings , 2011, SIAM J. Optim..

[57]  A. D. Ioffe Regularity on a Fixed Set , 2011, SIAM J. Optim..

[58]  J. Penot Calculus Without Derivatives , 2012 .

[59]  Zhou Wei,et al.  Perturbation Analysis of Error Bounds for Quasi-subsmooth Inequalities and Semi-infinite Constraint Systems , 2012, SIAM J. Optim..

[60]  Alexander Y. Kruger,et al.  From convergence principles to stability and optimality conditions , 2012 .

[62]  Alexander Y. Kruger,et al.  Error bounds for vector-valued functions: Necessary and sufficient conditions , 2012 .

[63]  Xi Yin Zheng,et al.  Metric subregularity for proximal generalized equations in Hilbert spaces , 2012 .

[64]  A. Kruger,et al.  SLOPES OF MULTIFUNCTIONS AND EXTENSIONS OF 1 METRIC REGULARITY 2 , 2012 .

[65]  K. W. Meng,et al.  Equivalent Conditions for Local Error Bounds , 2012 .

[67]  Marius Durea,et al.  On Subregularity Properties of Set-Valued Mappings , 2013 .

[68]  Huynh van Ngai,et al.  Implicit multifunction theorems in complete metric spaces , 2013, Math. Program..

[69]  Alexander D. Ioffe,et al.  Nonlinear regularity models , 2013, Mathematical Programming.

[70]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs , 2012 .

[71]  Marius Durea,et al.  Metric regularity of epigraphical multivalued mappings and applications to vector optimization , 2013, Math. Program..

[72]  Cao-zong Cheng,et al.  Linear and nonlinear error bounds for lower semicontinuous functions , 2014, Optim. Lett..

[73]  A. Uderzo,et al.  On Lipschitz Semicontinuity Properties of Variational Systems with Application to Parametric Optimization , 2013, Journal of Optimization Theory and Applications.

[74]  Miguel A. Goberna,et al.  Post-Optimal Analysis in Linear Semi-Infinite Optimization , 2014 .

[75]  T. T. A. Nghia A note on implicit multifunction theorems , 2014, Optim. Lett..

[76]  A. Uderzo On a Quantitative Semicontinuity Property of Variational Systems with Applications to Perturbed Quasidifferentiable Optimization , 2014 .

[77]  Helmut Gfrerer,et al.  On Metric Pseudo-(sub)Regularity of Multifunctions and Optimality Conditions for Degenerated Mathematical Programs , 2014 .

[78]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[79]  Xi Yin Zheng,et al.  Characterization of metric regularity for σ-subsmooth multifunctions , 2014 .

[80]  Qinghai He,et al.  Sufficient conditions for error bounds and linear regularity in Banach spaces , 2014 .

[81]  Huynh van Ngai,et al.  Directional Metric Regularity of Multifunctions , 2013, Math. Oper. Res..