Use of Wavelet Transform and Generalized Regression Neural Network (GRNN) to the Characterization of Short-Duration Voltage Variation in Electric Power System.
暂无分享,去创建一个
M.E. de Lima Tostes | U.H. Bezerra | R.C.L. de Oliveira | R.N. das Merces Machado | E.G. Pelaes | E. Pelaes | M. de Lima Tostes | R. D. de Oliveira | U. Bezerra | R.N. das Merces Machado
[1] Donald F. Specht,et al. A general regression neural network , 1991, IEEE Trans. Neural Networks.
[2] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[3] A. Y. Chikhani,et al. Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems , 2000 .
[4] Magdy M. A. Salama,et al. Wavelet-based signal processing for disturbance classification and measurement , 2002 .
[5] Edward J. Powers,et al. Power quality disturbance waveform recognition using wavelet-based neural classifier. II. Application , 2000 .
[6] Math Bollen,et al. Understanding Power Quality Problems: Voltage Sags and Interruptions , 1999 .
[7] M. Negnevitsky,et al. A Neural-Fuzzy Classifier for Recognition of Power Quality Disturbances , 2002, IEEE Power Engineering Review.
[8] Edward J. Powers,et al. Power quality disturbance waveform recognition using wavelet-based neural classifier. I. Theoretical foundation , 2000 .
[9] P. Daponte,et al. A method based on wavelet networks for the detection and classification of transients , 1998, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222).