Hierarchical on-line boosting based background subtraction

This paper presents a real-time background subtraction method which handles illumination changes and dynamic backgrounds such as flapping flags and waving trees. Previous approaches based on Gaussian mixture models usually generates models pixelwise, which makes it difficult to operate in realtime due to computational complexity. Moreover, pixelwise models tend to fail in sudden illumination changes or in dynamic backgrounds. In order to solve this problem, we propose an on-line boosting based background subtraction algorithm. Our approach divides the background area into overlapping patches instead of pixels, and learn classifiers with those patches. The main contribution of this paper is to propose a novel training process for classifiers which use block based Opponent Color Local Binary Pattern (OCLBP). Experimental results show that in environments containing illumination changes and/or dynamic backgrounds, our on-line boosting method using block based OCLBP outperforms previous on-line boosting methods or Gaussian mixture model based methods for robust background subtraction.

[1]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[2]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[3]  Matti Pietikäinen,et al.  Classification with color and texture: jointly or separately? , 2004, Pattern Recognit..

[4]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[5]  John Hannah,et al.  IEEE International Conference on Image Processing (ICIP) , 1997 .

[6]  In So Kweon,et al.  ROBUST BACKGROUND MAINTENANCE FOR DYNAMIC SCENES WITH GLOBAL INTENSITY LEVEL CHANGES , 2008 .

[7]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[8]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[9]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[10]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Dar-Shyang Lee,et al.  Effective Gaussian mixture learning for video background subtraction , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Avinash C. Kak,et al.  Hierarchical Data Structure for Real-Time Background Subtraction , 2006, 2006 International Conference on Image Processing.