Excitatory amino acid responses in relay neurons of the rat lateral geniculate nucleus

[1]  R. Wenthold,et al.  Glutamate Receptors Are Selectively Targeted to Postsynaptic Sites in Neurons , 1997, Neuron.

[2]  Anna A Penn,et al.  Thalamic Relay of Spontaneous Retinal Activity Prior to Vision , 1996, Neuron.

[3]  J. Roder,et al.  Enhanced LTP in Mice Deficient in the AMPA Receptor GluR2 , 1996, Neuron.

[4]  A. Macdermott,et al.  Synaptic strengthening through activation of Ca2+ -permeable AMPA receptors , 1996, Nature.

[5]  M. Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[6]  N. Akaike,et al.  Two components of CA3 pyramidal neurons of the rat , 1996, Brain Research.

[7]  N. Akaike,et al.  Effects of glucose deprivation on NMDA-induced current and intracellular Ca2+ in rat substantia nigra neurons. , 1996, Journal of neurophysiology.

[8]  M. Mishina,et al.  Structure and function of the NMDA receptor channel , 1995, Neuropharmacology.

[9]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[10]  C. Mulle,et al.  AMPA and kainate receptors , 1995, Neuropharmacology.

[11]  C. Frassoni,et al.  Distribution of AMPA selective glutamate receptors in the thalamus of adult rats and during postnatal development. A light and ultrastructural immunocytochemical study. , 1994, Brain research. Developmental brain research.

[12]  Z. Kisvárday,et al.  Prevention of Ca(2+)‐mediated action potentials in GABAergic local circuit neurones of rat thalamus by a transient K+ current. , 1994, The Journal of physiology.

[13]  Damon L. McCormick,et al.  Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[15]  Masahiko Watanabe,et al.  Distinct distributions of five N‐methyl‐D‐aspartate receptor channel subunit mRNAs in the forebrain , 1993, The Journal of comparative neurology.

[16]  B. Mellström,et al.  Functional kainate-selective glutamate receptors in cultured hippocampal neurons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Mayer,et al.  Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A , 1993, Neuron.

[18]  R. Zukin,et al.  Developmental Regulation of mRNAs Encoding Rat Brain Kainate/AMPA Receptors: A Northern Analysis Study , 1993, Journal of neurochemistry.

[19]  M. Mayer,et al.  Differential modulation by cyclothiazide and concanavalin A of desensitization at native alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainate-preferring glutamate receptors. , 1993, Molecular pharmacology.

[20]  W Wisden,et al.  A complex mosaic of high-affinity kainate receptors in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Richard Mooney,et al.  Enhancement of transmission at the developing retinogeniculate synapse , 1993, Neuron.

[22]  M. Tohyama,et al.  The differential expression patterns of messenger RNAs encoding non-N-methyl-d-aspartate glutamate receptor subunits (GluR1–4) in the rat brain , 1993, Neuroscience.

[23]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[24]  M. Bennett,et al.  Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[25]  R. Wenthold,et al.  N‐Acetylaspartylglutamate acts as an agonist upon homomeric NMDA receptor (NMDAR1) expressed in Xenopus oocytes , 1992, FEBS letters.

[26]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[27]  M. Sur,et al.  Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors , 1991, Nature.

[28]  M. Palkovits,et al.  Effect of optic nerve transection onN-acetylaspartylglutamate immunoreactivity in the primary and accessory optic projection systems in the rat , 1991, Brain Research.

[29]  A. Sillito,et al.  The contribution of thenon-N-methyl-d-aspartate group of excitatory amino acid receptors to retinogeniculate transmission in the cat , 1990, Neuroscience.

[30]  M. Namboodiri,et al.  N-acetylaspartylglutamate: a transmitter candidate for the retinohypothalamic tract. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  N. Akaike,et al.  Serotonin suppressesN-methyl-d-aspartate responses in acutely isolated spinal dorsal horn neurons of the rat , 1990, Brain Research.

[32]  M. Mayer,et al.  Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  J. Coyle,et al.  Selective release ofN-acetylaspartylglutamate from rat optic nerve terminals in vivo , 1990, Brain Research.

[34]  S. Sherman,et al.  N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate neurons recorded in thalamic slices. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Ozawa,et al.  Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. , 1990, The Journal of physiology.

[36]  A. Sillito,et al.  Dependence of retinogeniculate transmission in cat on NMDA receptors. , 1990, Journal of neurophysiology.

[37]  M. G. Honig,et al.  Dil and DiO: versatile fluorescent dyes for neuronal labelling and pathway tracing , 1989, Trends in Neurosciences.

[38]  E. R. Whittemore,et al.  An explanation for the purported excitation of piriform cortical neurons by N-acetyl-L-aspartyl-L-glutamic acid (NAAG). , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Lynch,et al.  Quinoxaline derivatives are high-affinity antagonists of the NMDA receptor-associated glycine sites , 1989, Brain Research.

[40]  Richard J. Miller,et al.  CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) antagonizes NMDA-evoked [3H]GABA release from cultured cortical neurons via an inhibitory action at the strychnine-insensitive glycine site , 1989, Brain Research.

[41]  A. Hernández-Cruz,et al.  Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. , 1989, Journal of neurophysiology.

[42]  J. Coyle,et al.  Calcium‐Dependent Evoked Release of N[3H]Acetylaspartylglutamate from the Optic Pathway , 1988, Journal of neurochemistry.

[43]  M. Stryker,et al.  Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. , 1988, Science.

[44]  R. Horn,et al.  Muscarinic activation of ionic currents measured by a new whole-cell recording method , 1988, The Journal of general physiology.

[45]  M. Mayer,et al.  Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones. , 1987, The Journal of physiology.

[46]  W. Singer,et al.  Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. , 1987, Science.

[47]  K. Okamoto,et al.  Excitatory action of N-acetylaspartylglutamate on Purkinje cells in guinea pig cerebellar slices: an intrasomatic study , 1987, Brain Research.

[48]  S. Tieman,et al.  N-acetylaspartylglutamate immunoreactivity in neurons of the cat's visual system , 1987, Brain Research.

[49]  C. Cotman,et al.  N-Acetylaspartylglutamate identified in the rat retinal ganglion cells and their projections in the brain , 1987, Brain Research.

[50]  E. R. Kloet,et al.  N-acetyl-aspartylglutamate: binding sites and excitatory action in the dorsolateral septum of rats , 1987, Brain Research.

[51]  J. Mori-Okamoto,et al.  Electrophysiological and pharmacological actions of N-acetylaspartylglutamate intracellularly studied in cultured chick cerebellar neurons , 1987, Brain Research.

[52]  M. Mayer,et al.  High concentrations of N-acetylaspartylglutamate (NAAG) selectively activate NMDA receptors on mouse spinal cord neurons in cell culture , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  M. Stryker,et al.  Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  S. Sherman,et al.  Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[55]  A. Sillito,et al.  The nature of the excitatory transmitter mediating X and Y cell inputs to the cat dorsal lateral geniculate nucleus , 1982, The Journal of physiology.

[56]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. III. Layer VI , 1976, Brain Research.

[57]  A. Peters,et al.  The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description , 1976, Journal of neurocytology.

[58]  A. Grossman,et al.  A Golgi study of the rat dorsal lateral geniculate nucleus , 1973, The Journal of comparative neurology.

[59]  R W Guillery,et al.  A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat , 1966, The Journal of comparative neurology.

[60]  Nauta Wj,et al.  The primary optic centres of the rat. An experimental study by the ;Bouton' method. , 1947 .

[61]  K. Lashley The mechanism of vision. VII. The projection of the retina upon the primary optic centers in the rat , 1934 .

[62]  J R Huguenard,et al.  Low-threshold calcium currents in central nervous system neurons. , 1996, Annual review of physiology.

[63]  N. Akaike,et al.  Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. , 1994, The Japanese journal of physiology.

[64]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[65]  M. Bennett,et al.  Erratum: Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats (Proc. Natl. Acad. Sci. USA (November 1, 1992) 89 (10499-10503)) , 1993 .

[66]  G. Paxinos The Rat nervous system , 1985 .