Magnon excitations in ultrathin Fe layers: The influence of the Dzyaloshinskii-Moriya interaction

High wave-vector magnon excitations in ferromagnetic Fe monolayer and double-layer grown on W(110) are investigated using spin-polarized electron energy loss spectroscopy. The magnon dispersion relation is obtained up to the Brillouin zone boundary. A direct comparison among different systems shows that the magnons in the Fe monolayer are extremely soft and are even softer than the acoustic surface mode of Fe(110). By measuring the spectra in both energy loss and gain regions on a double-layer Fe film at room temperature and by reversing the sample magnetization, it is demonstrated that the magnon dispersion is asymmetric with respect to the sign of the wave-vector. The asymmetric dispersion relation is attributed to the degeneracy breaking of the magnons due to the presence of the Dzyaloshinskii-Moriya interaction.

[1]  S. Trimper,et al.  Asymmetric dispersion relation in spin-spiral structures , 2010 .

[2]  R. Muniz,et al.  Spin-orbit coupling and spin waves in ultrathin ferromagnets: The spin-wave Rashba effect , 2010, 1004.3066.

[3]  L. Sandratskii,et al.  Nonmonotonic thickness dependence of spin wave energy in ultrathin Fe films: Experiment and theory , 2010 .

[4]  W. Tang,et al.  Asymmetric spin-wave dispersion on Fe(110): direct evidence of the Dzyaloshinskii-Moriya interaction. , 2010, Physical review letters.

[5]  J. Kirschner,et al.  On the preparation of clean tungsten single crystals , 2010 .

[6]  A. Taroni,et al.  Magnon softening in a ferromagnetic monolayer : A first-principles spin dynamics study , 2010, 1001.1669.

[7]  R. Wiesendanger,et al.  Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. , 2009, Physical review letters.

[8]  G. Bihlmayer,et al.  Describing Dzyaloshinskii–Moriya spirals from first principles , 2009 .

[9]  I. Tudosa,et al.  Magnons in a ferromagnetic monolayer. , 2009, Physical review letters.

[10]  L. Szunyogh,et al.  Chiral asymmetry of the spin-wave spectra in ultrathin magnetic films. , 2009, Physical review letters.

[11]  S. Heinze,et al.  Erratum: Atomic-Scale Spin Spiral with a Unique Rotational Sense: Mn Monolayer on W(001) [Phys. Rev. Lett.101, 027201 (2008)] , 2009 .

[12]  G. Bihlmayer,et al.  Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110) , 2008 .

[13]  R. Muniz,et al.  Magnetism of an Fe monolayer on W(110) , 2008 .

[14]  S. Heinze,et al.  Atomic-scale spin spiral with a unique rotational sense: Mn monolayer on W(001). , 2008, Physical review letters.

[15]  R. Muniz,et al.  Spin Dynamics of Itinerant Electron Ferromagnetic Nanostructures , 2008, IEEE Transactions on Magnetics.

[16]  S. Parkin,et al.  Handbook of magnetism and advanced magnetic materials , 2007 .

[17]  I. Tudosa,et al.  Large wave vector spin waves and dispersion in two monolayer fe on w(110). , 2007, Physical review letters.

[18]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[19]  R. Wiesendanger,et al.  Chiral magnetic ordering in two-dimensional ferromagnets with competing Dzyaloshinsky-Moriya interactions , 2007 .

[20]  R. Muniz,et al.  Spin waves and their damping in itinerant ultrathin ferromagnets : Intermediate wave vectors , 2006 .

[21]  R. Stamps,et al.  Anisotropy effects on the magnetic excitations of a ferromagnetic monolayer below and above the Curie temperature , 2005, cond-mat/0503538.

[22]  M. Toney,et al.  Neutron scattering studies of nanomagnetism and artificially structured materials , 2004 .

[23]  P. Weinberger,et al.  First-principles relativistic study of spin waves in thin magnetic films , 2003 .

[24]  R. Vollmer,et al.  Spin-polarized electron energy loss spectroscopy of high energy, large wave vector spin waves in ultrathin fcc Co films on Cu(001). , 2003, Physical review letters.

[25]  H. Elmers,et al.  Domain wall energy in quasi-one-dimensional Fe/W(110) nanostripes , 2003 .

[26]  R. Muniz,et al.  Microscopic theory of spin waves in ultrathin ferromagnetic films: Fe on W(110) , 2003 .

[27]  R. Muniz,et al.  Theory of spin excitations in Fe(110) multilayers , 2002 .

[28]  Burkard Hillebrands,et al.  Spin Dynamics in Confined Magnetic Structures III , 2002 .

[29]  R. Wiesendanger,et al.  Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes. , 2001, Physical review letters.

[30]  M. Plihal,et al.  Spin Wave Signature in the Spin Polarized Electron Energy Loss Spectrum of Ultrathin Fe Films: Theory and Experiment , 1999 .

[31]  B. Heinrich Radio Frequency Techniques , 1994 .

[32]  Przybylski,et al.  Ferromagnetic order in a Fe(110) monolayer on W(110) by Mössbauer spectroscopy. , 1987, Physical review letters.

[33]  P. Grünberg Light scattering from magnetic surface excitations , 1985 .

[34]  H. Mook,et al.  Neutron Scattering Investigation of the Magnetic Excitations in Iron , 1973 .

[35]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[36]  Z. Frait On the origin of the width of the ferromagnetic resonance curve , 1959 .