Finding stationary brain sources in EEG data

Neurophysiological measurements obtained from e.g. EEG or fMRI are inherently non-stationary because the properties of the underlying brain processes vary over time. For example, in Brain-Computer-Interfacing (BCI), deteriorating performance (bitrate) is a common phenomenon since the parameters determined during the calibration phase can be suboptimal under the application regime, where the brain state is different, e.g. due to increased tiredness or changes in the experimental paradigm. We show that Stationary Subspace Analysis (SSA), a time series analysis method, can be used to identify the underlying stationary and non-stationary brain sources from high-dimensional EEG measurements. Restricting the BCI to the stationary sources found by SSA can significantly increase the performance. Moreover, SSA yields topographic maps corresponding to stationary- and non-stationary brain sources which reveal their spatial characteristics.

[1]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[2]  K. Müller,et al.  Predicting BCI performance to study BCI illiteracy , 2009, BMC Neuroscience.

[3]  B. Blankertz,et al.  Unsupervised adaptation of the LDA classifier for Brain-Computer interfaces , 2008 .

[4]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[5]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[6]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[7]  H. Berger Über das Elektrenkephalogramm des Menschen , 1933, Archiv für Psychiatrie und Nervenkrankheiten.

[8]  K. Müller,et al.  Finding stationary subspaces in multivariate time series. , 2009, Physical review letters.

[9]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[10]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[11]  Terrence J. Sejnowski,et al.  Toward Brain-Computer Interfacing (Neural Information Processing) , 2007 .

[12]  Rajesh P. N. Rao,et al.  Towards adaptive classification for BCI , 2006, Journal of neural engineering.

[13]  Masashi Sugiyama,et al.  Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis , 2007, J. Mach. Learn. Res..

[14]  K.-R. Muller,et al.  Optimizing Spatial filters for Robust EEG Single-Trial Analysis , 2008, IEEE Signal Processing Magazine.

[15]  Motoaki Kawanabe,et al.  Invariant Common Spatial Patterns: Alleviating Nonstationarities in Brain-Computer Interfacing , 2007, NIPS.

[16]  Z J Koles,et al.  The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. , 1991, Electroencephalography and clinical neurophysiology.

[17]  Klaus-Robert Müller,et al.  Neurophysiological predictor of SMR-based BCI performance , 2010, NeuroImage.

[18]  Mark D. Plumbley Geometrical methods for non-negative ICA: Manifolds, Lie groups and toral subalgebras , 2005, Neurocomputing.

[19]  E. Oja,et al.  Independent Component Analysis , 2001 .

[20]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.