Systematic sampling on the circle and on the sphere

Useful approximations have been developed along the years to predict the precision of systematic sampling for measurable functions of a bounded support in ℝ d . Recently, the theory of systematic sampling on ℝ has received a thrust. In geometric sampling, design based unbiased estimators exist, however, which imply systematic sampling on the circle (𝕊1) and the semicircle (ℍ1); the planimeter estimator of an area, or the Buffon-Steinhaus estimator of curve length in the plane constitute popular examples. Over the last two decades, many other estimators of geometric measures have been obtained which imply systematic sampling also on the sphere (𝕊2). In this paper we adapt the theory available for non-periodic functions of bounded support on ℝ to periodic functions, and thereby to 𝕊1 and ℍ1, and we obtain new estimators of the corresponding variance approximations. Further we consider - we believe for the first time - the problem of predicting the precision of systematic sampling in 𝕊2. The paper starts with a historical perspective, and ends with suggestions for further research.

[1]  C. Vyvyan Howard,et al.  Estimating the length of a bounded curve in three dimensions using total vertical projections , 1991 .

[2]  A Note on Extension Variances in IR2 , 1998 .

[3]  M. N. Murthy Sampling theory and methods. , 1967 .

[4]  H. Gundersen,et al.  The efficiency of systematic sampling in stereology — reconsidered , 1999, Journal of microscopy.

[5]  N Roberts,et al.  The application of total vertical projections for the unbiased estimation of the length of blood vessels and other structures by magnetic resonance imaging. , 1991, Magnetic resonance imaging.

[6]  Brian D. Ripley,et al.  Integral Geometry and Geometrical Probability , 1978, The Mathematical Gazette.

[7]  David G. Kendall,et al.  ON THE NUMBER OF LATTICE POINTS INSIDE A RANDOM OVAL , 1948 .

[8]  刘汉良 等距抽样(Systematic Sampling) , 1900 .

[9]  E. H. Lockwood,et al.  A Book of Curves , 1963, The Mathematical Gazette.

[10]  L M Cruz-Orive,et al.  Particle number can be estimated using a disector of unknown thickness: the selector. , 1987, Journal of microscopy.

[11]  Jacques Istas,et al.  Precision of systematic sampling and transitive methods , 1999 .

[12]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[13]  D. R. Bellhouse,et al.  6 Systematic sampling , 1988 .

[14]  Luis M. Cruz-Orive,et al.  Stereology of single objects , 1997 .

[15]  Alan Jeffrey Linear Algebra and Ordinary Differential Equations , 1991 .

[16]  Luis M. Cruz-Orive,et al.  On the precision of systematic sampling: a review of Matheron's transitive methods , 1989 .

[17]  P. Moran Measuring the length of a curve , 1966 .

[18]  Albrecht M. Kellerer,et al.  Exact formulae for the precision of systematic sampling , 1989 .

[19]  L M Cruz-Orive,et al.  Precision of Cavalieri sections and slices with local errors , 1999, Journal of microscopy.

[20]  H J Gundersen,et al.  The nucleator , 1988, Journal of microscopy.

[21]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[22]  D. Kendall,et al.  On the number of points of a given lattice in a random hypersphere , 1953 .

[23]  L M Cruz-Orive,et al.  Estimation of surface area from vertical sections , 1986, Journal of microscopy.

[24]  H. Gundersen,et al.  Fundamental stereological formulae based on isotropically orientated probes through fixed points with applications to particle analysis , 1989 .

[25]  H J Gundersen,et al.  The efficiency of systematic sampling in stereology and its prediction * , 1987, Journal of microscopy.

[26]  P. A. P. Moran,et al.  Numerical integration by systematic sampling , 1950, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  E. B. VEDEL JENSEN,et al.  The rotator , 1993 .

[28]  Bertil Matérn,et al.  Precision of area estimation: a numerical study , 1989 .

[29]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[30]  N Roberts,et al.  Unbiased volume estimation with coaxial sections: an application to the human bladder , 1993, Journal of microscopy.

[31]  Luis M. Cruz-Orive,et al.  Variance prediction under systematic sampling with geometric probes , 1998, Advances in Applied Probability.

[32]  Samuel Weiss,et al.  Sample Survey Methods and Theory, Vols. I and II. Morris H. Hansen, William N. Hurwitz, and William G. Madow. Wiley, New York; Chapman & Hall, London, 1953. Vol. I, 638 pp., $8. Vol. II, 332 pp., $7 , 1954 .