Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems

This paper deals with the problem of non-fragile observer design for a class of Lipschitz nonlinear fractional order systems. Using continuous frequency distribution, the stability conditions based on indirect approach to Lyapunov stability are derived. A systematic algorithm is presented, which checks for feasibility of a solution to the quadratic inequality and yields an observer whenever the solution is feasible. Finally a chaos synchronization example is provided to show the effectiveness of the proposed method.

[1]  Naser Pariz,et al.  A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter , 2009 .

[2]  Vahid Johari Majd,et al.  A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization , 2011 .

[3]  R. Rajamani,et al.  A systematic approach to adaptive observer synthesis for nonlinear systems , 1997, IEEE Trans. Autom. Control..

[4]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[5]  Moez Feki,et al.  Synchronizing fractional order chaotic systems with an integer order observer , 2011, Eighth International Multi-Conference on Systems, Signals & Devices.

[6]  Reza Ghaderi,et al.  Sliding mode synchronization of an uncertain fractional order chaotic system , 2010, Comput. Math. Appl..

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Qigui Yang,et al.  Parameter identification and synchronization of fractional-order chaotic systems , 2012 .

[9]  Alain Oustaloup,et al.  A Lyapunov approach to the stability of fractional differential equations , 2009, Signal Process..

[10]  P. Dorato,et al.  Non-fragile controller design: an overview , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[11]  W. Zhang,et al.  LMI criteria for robust chaos synchronization of a class of chaotic systems , 2007 .

[12]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[13]  Chung Seop Jeong,et al.  Resilient design of observers with general criteria using LMIs , 2006, 2006 American Control Conference.

[14]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[15]  Mathieu Moze,et al.  LMI stability conditions for fractional order systems , 2010, Comput. Math. Appl..

[16]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[17]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[18]  Li Xinjie,et al.  Observer designing for generalized synchronization of fractional order hyper-chaotic Lü system , 2009, 2009 Chinese Control and Decision Conference.

[19]  Yong-Hong Lan,et al.  Observer-based robust control of a (1⩽ a ≪ 2) fractional-order uncertain systems: a linear matrix inequality approach , 2012 .

[20]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[21]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[22]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[23]  Sara Dadras,et al.  Control of a fractional-order economical system via sliding mode , 2010 .

[24]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[25]  Zhou Ping,et al.  Synchronization between different fractional order chaotic systems , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[26]  Mohammad Saleh Tavazoei,et al.  Robust synchronization of perturbed Chen's fractional-order chaotic systems , 2011 .