Risk Preferences and their Robust Representation

To address the plurality of interpretations of the subjective notion of risk, we describe it by means of a risk order and concentrate on the context invariant features of diversification and monotonicity. Our main results are uniquely characterized robust representations of lower semicontinuous risk orders on vector spaces and convex sets. This representation covers most instruments related to risk and allows for a differentiated interpretation depending on the underlying context that is illustrated in different settings: for random variables, risk perception can be interpreted as model risk, and we compute among others the robust representation of the economic index of riskiness. For lotteries, risk perception can be viewed as distributional risk and we study the “value at risk.” For consumption patterns, which excerpt an intertemporality dimension in risk perception, we provide an interpretation in terms of discounting risk and discuss some examples.

[1]  T. Rader,et al.  The Existence of a Utility Function to Represent Preferences , 1963 .

[2]  J. Keynes The General Theory of Employment , 1937 .

[3]  David M. Kreps,et al.  On Intertemporal Preferences in Continuous Time: The Case of Certainty , 2015 .

[4]  Simone Cerreia-Vioglio,et al.  Maxmin Expected Utility on a Subjective State Space: Convex Preferences under Risk JOB MARKET PAPER , 2009 .

[5]  L. Montrucchio,et al.  RISK MEASURES: RATIONALITY AND DIVERSIFICATION , 2010 .

[6]  Patrick Cheridito,et al.  Recursiveness of indifference prices and translation-invariant preferences , 2009 .

[7]  Frank Riedel,et al.  Optimal consumption choice with intertemporal substitution , 2001 .

[8]  G. Debreu ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .

[9]  N. Luhmann Risk: A Sociological Theory , 1993 .

[10]  Jonathan M. Borwein,et al.  Automatic continuity and openness of convex relations , 1987 .

[11]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[12]  Hans Föllmer,et al.  Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles , 2010, Finance Stochastics.

[13]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[14]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[15]  Helyette Geman Mathematical finance : Bachelier Congress, 2000 : selected papers from the First World Congress of the Bachelier Finance Society, Paris, June 29-July 1, 2000 , 2001 .

[16]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[17]  Peter C. Fishburn,et al.  Nonlinear preference and utility theory , 1988 .

[18]  Melvyn Sim,et al.  Aspirational Preferences and Their Representation by Risk Measures , 2012, Manag. Sci..

[19]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[20]  H. Föllmer,et al.  Stochastic Finance: An Introduction in Discrete Time , 2002 .

[21]  N. Luhmann,et al.  Modern society shocked by its risks , 1996 .

[22]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[23]  Patrick Cheridito,et al.  COMPOSITION OF TIME-CONSISTENT DYNAMIC MONETARY RISK MEASURES IN DISCRETE TIME , 2011 .

[24]  Jean-Paul Penot,et al.  On Quasi-Convex Duality , 1990, Math. Oper. Res..

[25]  Larry L. Constantine,et al.  Back to the future , 2001, CACM.

[26]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[27]  H. Föllmer,et al.  Robust Preferences and Robust Portfolio Choice , 2009 .

[28]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[29]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[30]  Patrick Cheridito,et al.  Weak Closedness of Monotone Sets of Lotteries and Robust Representation of Risk Preferences , 2013 .

[31]  Isaac Namioka,et al.  Partially Ordered Linear Topological Spaces , 1974 .

[32]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[33]  O. Canziani,et al.  Climate change 2007: synthesis report. Summary for policymakers , 2007 .

[34]  Sergiu Hart,et al.  An Operational Measure of Riskiness , 2009, Journal of Political Economy.

[35]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[36]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[37]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[38]  H. Föllmer,et al.  Convex risk measures and the dynamics of their penalty functions , 2006 .

[39]  J. Keynes,et al.  The General Theory of Employment, Interest and Money. , 1936 .

[40]  Gianni Bosi,et al.  Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof , 2002 .

[41]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[42]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[43]  Robert J. Aumann,et al.  An Economic Index of Riskiness , 2008, Journal of Political Economy.

[44]  R. Aumann UTILITY THEORY WITHOUT THE COMPLETENESS AXIOM , 1962 .

[45]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[46]  Jean-Pierre Crouzeix Conditions for Convexity of Quasiconvex Functions , 1980, Math. Oper. Res..

[47]  Massimo Marinacci,et al.  Complete Monotone Quasiconcave Duality , 2011, Math. Oper. Res..

[48]  Evan L. Porteus,et al.  Temporal von neumann-morgenstern and induced preferences , 1979 .

[49]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[50]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[51]  Patrick Cheridito,et al.  RISK MEASURES ON ORLICZ HEARTS , 2009 .

[52]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[53]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[54]  Massimo Marinacci,et al.  PORTFOLIO SELECTION WITH MONOTONE MEAN‐VARIANCE PREFERENCES , 2009 .

[55]  Aleš Černý Generalized Sharpe Ratios and Asset Pricing in Incomplete Markets , 2000 .

[56]  A. Tversky,et al.  Choices, Values, and Frames , 2000 .

[57]  B. Finetti,et al.  Sulle stratificazioni convesse , 1949 .

[58]  Damir Filipović,et al.  Separation and duality in locally L 0 -convex modules , 2009 .

[59]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[60]  Massimo Marinacci,et al.  Dynamic variational preferences , 2006, J. Econ. Theory.

[61]  Freddy Delbaen,et al.  A von Neumann–Morgenstern Representation Result without Weak Continuity Assumption , 2011 .

[62]  B. Peleg UTILITY FUNCTIONS FOR PARTIALLY ORDERED TOPOLOGICAL SPACES. , 1970 .

[63]  Costis Skiadas,et al.  Subjective Probability under Additive Aggregation of Conditional Preferences , 1997 .

[64]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[65]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[66]  Jean-Paul Penot,et al.  Inversion of real-valued functions and applications , 1990, ZOR Methods Model. Oper. Res..

[67]  Z. Maguar,et al.  Functional equations in several variables , 1993 .

[68]  Juan Carlos Candeal,et al.  The existence of utility functions for weakly continuous preferences on a Banach space , 2006, Math. Soc. Sci..

[69]  Costis Skiadas,et al.  Conditioning and Aggregation of Preferences , 1997 .

[70]  Andreu Mas-Colell,et al.  The Price Equilibrium Existence Problem in Topological Vector Lattice s , 1986 .

[71]  N. El Karoui,et al.  CASH SUBADDITIVE RISK MEASURES AND INTEREST RATE AMBIGUITY , 2007, 0710.4106.

[72]  Larry E. Jones,et al.  A Competitive Model of Commodity Differentiation , 1984 .

[73]  Dilip B. Madan,et al.  New Measures for Performance Evaluation , 2007 .

[74]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[75]  Philippe Mongin,et al.  A note on mixture sets in decision theory , 2001 .

[76]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .