Ultrafast Carbon-Carbon Single-Bond Rotational Isomerization in Room-Temperature Solution

Generally, rotational isomerization about the carbon-carbon single bond in simple ethane derivatives in room-temperature solution under thermal equilibrium conditions has been too fast to measure. We achieved this goal using two-dimensional infrared vibrational echo spectroscopy to observe isomerization between the gauche and trans conformations of an ethane derivative, 1-fluoro-2-isocyanato-ethane (1), in a CCl4 solution at room temperature. The isomerization time constant is 43 picoseconds (ps, 10–12 s). Based on this value and on density functional theory calculations of the barrier heights of 1, n-butane, and ethane, the time constants for n-butane and ethane internal rotation under the same conditions are ∼40 and ∼12 ps, respectively.

[1]  K. Kwak,et al.  Formation and dissociation of intra-intermolecular hydrogen-bonded solute-solvent complexes: chemical exchange two-dimensional infrared vibrational echo spectroscopy. , 2006, Journal of the American Chemical Society.

[2]  Michael D. Fayer,et al.  Polarization selective spectroscopy experiments: methodology and pitfalls , 2005 .

[3]  Junrong Zheng,et al.  Ultrafast Dynamics of Solute-Solvent Complexation Observed at Thermal Equilibrium in Real Time , 2005, Science.

[4]  R. Hochstrasser,et al.  Chemical exchange 2D IR of hydrogen-bond making and breaking. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[5]  N. Demirdöven,et al.  Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy. , 2004, Journal of Chemical Physics.

[6]  J. Asbury,et al.  Vibrational echo correlation spectroscopy probes of hydrogen bond dynamics in water and methanol. , 2004, Journal of luminescence.

[7]  E. Baerends,et al.  The case for steric repulsion causing the staggered conformation of ethane. , 2003, Angewandte Chemie.

[8]  D. Myers,et al.  Isomerization and intermolecular solute-solvent interactions of ethyl isocyanate: Ultrafast infrared vibrational echoes and linear vibrational spectroscopy , 2003 .

[9]  Manuel Laso,et al.  Conformational kinetics in liquid n-butane by transition path sampling , 2001 .

[10]  Lionel Goodman,et al.  Hyperconjugation not steric repulsion leads to the staggered structure of ethane , 2001, Nature.

[11]  S. Howdle,et al.  Dynamic IR spectroscopy: occurrence and predictability of coalescence in the carbon monoxide stretching vibrations of 13CO-enriched tricarbonyl(.eta.4-norbornadiene)iron , 1991 .

[12]  J. Clarke,et al.  A direct method of studying reaction rates by equilibrium molecular dynamics: Application to the kinetics of isomerization in liquid n‐butane , 1990 .

[13]  Roger Edberg,et al.  Conformational kinetics in liquid butane by nonequilibrium molecular dynamics , 1987 .

[14]  H. L. Strauss,et al.  Can the Bloch equations describe the vibrational spectra of a reacting molecule , 1985 .

[15]  S. Weiss,et al.  Picosecond kinetics by exchange broadening in the infrared and Raman. 1. 1,2-Dichloroethane , 1983 .

[16]  Bruce J. Berne,et al.  Isomerization dynamics in liquids by molecular dynamics , 1980 .

[17]  Thomas A. Weber,et al.  Simulation of n‐butane using a skeletal alkane model , 1978 .

[18]  David Chandler,et al.  Statistical mechanics of isomerization dynamics in liquids and the transition state approximation , 1978 .

[19]  Andrew Streitwieser,et al.  Progress in Physical Organic Chemistry , 1976 .

[20]  J. Sandström Dynamic nuclear magnetic resonance spectroscopy. , 1974, Endeavour.

[21]  H. L. Strauss Changes of the carbonyl stretching spectra with temperature , 1992 .

[22]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[23]  W. J. Orville-Thomas,et al.  Internal rotation in molecules , 1974 .

[24]  G. W. Wheland,et al.  Advanced Organic Chemistry , 1951, Nature.