Efficient, exact algorithms for asian options with multiresolution lattices

Asian options are a kind of path-dependent derivative. How to price such derivatives efficiently and accurately has been a long-standing research and practical problem. This paper proposes a novel multiresolution (MR) trinomial lattice for pricing European- and American-style arithmetic Asian options. Extensive experimental work suggests that this new approach is both efficient and more accurate than existing methods. It also computes the numerical delta accurately. The MR algorithm is exact as no errors are introduced during backward induction. In fact, it may be the first exact discrete-time algorithm to break the exponential-time barrier. The MR algorithm is guaranteed to converge to the continuous-time value.

[1]  Fast Pricing of European Asian Options with Provable Accuracy: Single-Stock and Basket Options , 2001, ESA.

[2]  Peter H. Ritchken,et al.  The valuation of path dependent contracts on the average , 1993 .

[3]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[4]  Bin Gao,et al.  Pricing Discrete Barrier Options with an Adaptive Mesh Model , 1999 .

[5]  M. Fu,et al.  Pricing Continuous Asian Options: A Comparison of Monte Carlo and Laplace Transform Inversion Methods , 1998 .

[6]  S. Turnbull,et al.  A Quick Algorithm for Pricing European Average Options , 1991, Journal of Financial and Quantitative Analysis.

[7]  P. Glasserman,et al.  Estimating security price derivatives using simulation , 1996 .

[8]  L. Rogers,et al.  The value of an Asian option , 1995, Journal of Applied Probability.

[9]  D. Duffie Dynamic Asset Pricing Theory , 1992 .

[10]  Ward Whitt,et al.  Numerical Inversion of Laplace Transforms of Probability Distributions , 1995, INFORMS J. Comput..

[11]  C. J. Harwood Modelling Financial Derivatives with Mathematica , 2000 .

[12]  P. Chalasani,et al.  A Refined Binomial Lattice for Pricing American Asian Options , 1999 .

[13]  Azriel Rosenfeld,et al.  Multiresolution image processing and analysis , 1984 .

[14]  Tim W. Klassen Simple, Fast and Flexible Pricing of Asian Options , 2000 .

[15]  Rajeev Motwani,et al.  Accurate approximations for Asian options , 2000, SODA '00.

[16]  Yuh-Dauh Lyuu,et al.  Financial Engineering and Computation: Principles, Mathematics, Algorithms , 2001 .

[17]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[18]  J. Barraquand,et al.  PRICING OF AMERICAN PATH‐DEPENDENT CONTINGENT CLAIMS , 1996 .

[19]  Mark Broadie,et al.  Connecting discrete and continuous path-dependent options , 1999, Finance Stochastics.

[20]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[21]  T. Vorst,et al.  The Binomial Model and the Greeks , 1994 .

[22]  Yuh-Dauh Lyuu,et al.  Very Fast Algorithms for Barrier Option Pricing and the Ballot Problem , 1998 .

[23]  Edmond Levy Pricing European average rate currency options , 1992 .

[24]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[25]  Alan G. White,et al.  Efficient Procedures for Valuing European and American Path-Dependent Options , 1993 .

[26]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[27]  P. A. FORSYTHy,et al.  Discrete Asian Barrier Options , 1998 .

[28]  J. V. Leeuwen The domino effect , 2004, physics/0401018.

[29]  A. Kemna,et al.  A pricing method for options based on average asset values , 1990 .