A single cell transcriptional roadmap for cardiopharyngeal fate diversification

[1]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[2]  B. Göttgens,et al.  Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq , 2018, Science.

[3]  Florian Razy-Krajka,et al.  An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time , 2018, eLife.

[4]  W. Wang,et al.  Purification of Fluorescent Labeled Cells from Dissociated Ciona Embryos. , 2018, Advances in experimental medicine and biology.

[5]  David J. Jörg,et al.  Defining murine organogenesis at single cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation , 2018, Nature Cell Biology.

[6]  Florian Razy-Krajka,et al.  An FGF-driven feed-forward circuit for spatiotemporal patterning of the cardiopharyngeal mesoderm in a simple chordate , 2017, bioRxiv.

[7]  M. Haeussler,et al.  Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona , 2016, bioRxiv.

[8]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[9]  Andrew C. Adey,et al.  Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing , 2017 .

[10]  J. Waxman,et al.  Wnt signaling balances specification of the cardiac and pharyngeal muscle fields , 2017, Mechanisms of Development.

[11]  P. Zhu,et al.  Temporally Distinct Six2-Positive Second Heart Field Progenitors Regulate Mammalian Heart Development and Disease. , 2017, Cell reports.

[12]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[13]  I. Rebay,et al.  Master regulators in development: Views from the Drosophila retinal determination and mammalian pluripotency gene networks. , 2017, Developmental biology.

[14]  Beth L. Pruitt,et al.  Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis , 2016, Cell.

[15]  Bin Zhou,et al.  Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. , 2016, Developmental cell.

[16]  J. Seidman,et al.  Single-Cell Resolution of Temporal Gene Expression during Heart Development. , 2016, Developmental cell.

[17]  A. M. Arias,et al.  Transition states and cell fate decisions in epigenetic landscapes , 2016, Nature Reviews Genetics.

[18]  J. Lieb,et al.  A Transcriptional Lineage of the Early C. elegans Embryo. , 2016, Developmental cell.

[19]  L. Christiaen,et al.  Ciona as a Simple Chordate Model for Heart Development and Regeneration , 2016, Journal of cardiovascular development and disease.

[20]  A. Vincent,et al.  Genetic dissection of the Transcription Factor code controlling serial specification of muscle identities in Drosophila , 2016, eLife.

[21]  Nicola K. Wilson,et al.  Resolving Early Mesoderm Diversification through Single Cell Expression Profiling , 2016, Nature.

[22]  Md. Abul Hassan Samee,et al.  Complex Interdependence Regulates Heterotypic Transcription Factor Distribution and Coordinates Cardiogenesis , 2016, Cell.

[23]  L. Christiaen,et al.  Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages , 2016, Development.

[24]  N. Rosenthal,et al.  Revisiting Cardiac Cellular Composition. , 2016, Circulation research.

[25]  R. Stewart,et al.  Development of Bipotent Cardiac/Skeletal Myogenic Progenitors from MESP1+ Mesoderm , 2016, Stem cell reports.

[26]  Frédéric Delsuc,et al.  ANISEED 2015: a digital framework for the comparative developmental biology of ascidians , 2015, Nucleic Acids Res..

[27]  Cole Trapnell,et al.  Defining cell types and states with single-cell genomics , 2015, Genome research.

[28]  R. Sambasivan,et al.  A Cranial Mesoderm Origin for Esophagus Striated Muscles. , 2015, Developmental cell.

[29]  Fabian J. Theis,et al.  Diffusion maps for high-dimensional single-cell analysis of differentiation data , 2015, Bioinform..

[30]  L. Zon,et al.  Chamber identity programs drive early functional partitioning of the heart , 2015, Nature Communications.

[31]  Tariq Enver,et al.  Primed and ready: understanding lineage commitment through single cell analysis. , 2015, Trends in cell biology.

[32]  Lionel Christiaen,et al.  Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. , 2015, Current opinion in genetics & development.

[33]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[34]  Lionel Christiaen,et al.  A new heart for a new head in vertebrate cardiopharyngeal evolution , 2015, Nature.

[35]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression data , 2015 .

[36]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[37]  Fabian J Theis,et al.  Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements , 2015, Nature Biotechnology.

[38]  Wissam Hamou,et al.  Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium , 2015, Proceedings of the National Academy of Sciences.

[39]  John D. Storey,et al.  Statistical significance of variables driving systematic variation in high-dimensional data , 2013, Bioinform..

[40]  M. El-Magd,et al.  Regulation of Chick Ebf1-3 Gene Expression in the Pharyngeal Arches, Cranial Sensory Ganglia and Placodes , 2015, Cells Tissues Organs.

[41]  Alberto Stolfi,et al.  Tissue-specific genome editing in Ciona embryos by CRISPR/Cas9 , 2014, Development.

[42]  M. El-Magd,et al.  The effect of RA on the chick Ebf1-3 genes expression in somites and pharyngeal arches , 2014, Development Genes and Evolution.

[43]  Joshua D. Wythe,et al.  Early patterning and specification of cardiac progenitors in gastrulating mesoderm , 2014, eLife.

[44]  C. T. Brown,et al.  Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians , 2014, eLife.

[45]  Diego di Bernardo,et al.  Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis , 2014, Nature Communications.

[46]  Benjamin D. Simons,et al.  Early lineage restriction in temporally distinct populations of Mesp1 progenitors during mammalian heart development , 2014, Nature Cell Biology.

[47]  F. Lescroart,et al.  Cardiac cell lineages that form the heart. , 2014, Cold Spring Harbor perspectives in medicine.

[48]  A. Moon,et al.  Mesodermal Nkx2.5 is necessary and sufficient for early second heart field development. , 2014, Developmental biology.

[49]  Richard Bonneau,et al.  Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. , 2014, Developmental cell.

[50]  Sean C. Bendall,et al.  Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development , 2014, Cell.

[51]  D. Zheng,et al.  Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication. , 2014, Human molecular genetics.

[52]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[53]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[54]  Wei Wang,et al.  NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field , 2013, PLoS biology.

[55]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[56]  C. Desplan,et al.  Temporal patterning of Drosophila medulla neuroblasts controls neural fates , 2013, Nature.

[57]  Caroline E. Burns,et al.  Tbx1 is required for second heart field proliferation in zebrafish , 2013, Developmental dynamics : an official publication of the American Association of Anatomists.

[58]  Anushya Muruganujan,et al.  PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees , 2012, Nucleic Acids Res..

[59]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[60]  J. Hegesh,et al.  Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis , 2012, Proceedings of the National Academy of Sciences.

[61]  A. Kuroiwa,et al.  Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nkx2-5, and Islet1 reveals a genetic switch for down-regulation in the myocardium , 2012, Proceedings of the National Academy of Sciences.

[62]  Ella Starobinska,et al.  Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. , 2012, Developmental biology.

[63]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[64]  Y. S. Green,et al.  EBF proteins participate in transcriptional regulation of Xenopus muscle development. , 2011, Developmental biology.

[65]  S. Evans,et al.  Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. , 2011, Cardiovascular research.

[66]  Caroline E. Burns,et al.  Latent TGFβ binding protein 3 identifies a second heart field in zebrafish , 2011, Nature.

[67]  B. Morrow,et al.  A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. , 2011, The Journal of clinical investigation.

[68]  D. Srivastava,et al.  Hand2 function in second heart field progenitors is essential for cardiogenesis. , 2011, Developmental biology.

[69]  F. Lescroart,et al.  Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo , 2010, Development.

[70]  E. Domany,et al.  BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors , 2010, Development.

[71]  M. Kirby,et al.  Development and Stem Cells Research Article , 2022 .

[72]  Lionel Christiaen,et al.  Early Chordate Origins of the Vertebrate Second Heart Field , 2010, Science.

[73]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[74]  T. Enver,et al.  Forcing cells to change lineages , 2009, Nature.

[75]  M. Levine,et al.  Isolation of individual cells and tissues from electroporated sea squirt (Ciona) embryos by fluorescence-activated cell sorting (FACS). , 2009, Cold Spring Harbor protocols.

[76]  M. Levine,et al.  The sea squirt Ciona intestinalis. , 2009, Cold Spring Harbor protocols.

[77]  Susan Tang,et al.  Tbx1 Regulates Proliferation and Differentiation of Multipotent Heart Progenitors , 2009, Circulation research.

[78]  A. Moorman,et al.  Epicardium and Myocardium Separate From a Common Precursor Pool by Crosstalk Between Bone Morphogenetic Protein– and Fibroblast Growth Factor–Signaling Pathways , 2009, Circulation research.

[79]  J. Kumar The molecular circuitry governing retinal determination. , 2009, Biochimica et biophysica acta.

[80]  N. Satoh,et al.  M-Ras evolved independently of R-Ras and its neural function is conserved between mammalian and ascidian, which lacks classical Ras. , 2009, Gene.

[81]  R. Schwartz,et al.  Frs2α-deficiency in cardiac progenitors disrupts a subset of FGF signals required for outflow tract morphogenesis , 2008, Development.

[82]  D. Yelon,et al.  Reiterative roles for FGF signaling in the establishment of size and proportion of the zebrafish heart. , 2008, Developmental biology.

[83]  Takeshi Kawashima,et al.  The Transcription/Migration Interface in Heart Precursors of Ciona intestinalis , 2008, Science.

[84]  B. Morrow,et al.  Identification of downstream genetic pathways of Tbx1 in the second heart field. , 2008, Developmental biology.

[85]  I. Harel,et al.  The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development , 2008, Development.

[86]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[87]  M. Levine,et al.  FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis , 2007, Development.

[88]  R. Kelly,et al.  Heartening news for head muscle development. , 2007, Trends in genetics : TIG.

[89]  E. Tzahor,et al.  Wnt/β-Catenin Signaling and Cardiogenesis: Timing Does Matter , 2007 .

[90]  Kazuho Ikeo,et al.  A web‐based interactive developmental table for the ascidian Ciona intestinalis, including 3D real‐image embryo reconstructions: I. From fertilized egg to hatching larva , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[91]  Milena B. Furtado,et al.  An Nkx2-5/Bmp2/Smad1 Negative Feedback Loop Controls Heart Progenitor Specification and Proliferation , 2007, Cell.

[92]  V. Papaioannou,et al.  Visualization of outflow tract development in the absence of Tbx1 using an FgF10 enhancer trap transgene , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[93]  B. Davidson Ciona intestinalis as a model for cardiac development. , 2007, Seminars in cell & developmental biology.

[94]  E. Tzahor Wnt/beta-catenin signaling and cardiogenesis: timing does matter. , 2007, Developmental cell.

[95]  Wouter Houthoofd,et al.  The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea) , 2007 .

[96]  T. Hastie,et al.  Principal Curves , 2007 .

[97]  Lionel Christiaen,et al.  FGF signaling delineates the cardiac progenitor field in the simple chordate, Ciona intestinalis. , 2006, Genes & development.

[98]  A. Baldini,et al.  Mesodermal expression of Tbx1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development , 2006, Development.

[99]  E. Tzahor,et al.  Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract , 2006, Development.

[100]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[101]  M. Buckingham,et al.  Building the mammalian heart from two sources of myocardial cells , 2005, Nature Reviews Genetics.

[102]  M. Levine,et al.  Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis , 2005, Development.

[103]  L. Jerome-Majewska,et al.  The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. , 2004, Human molecular genetics.

[104]  N. Satoh,et al.  The ascidian Mesp gene specifies heart precursor cells , 2004, Development.

[105]  M. Buckingham,et al.  The clonal origin of myocardial cells in different regions of the embryonic mouse heart. , 2004, Developmental cell.

[106]  M. Buckingham,et al.  A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart , 2003, Development.

[107]  Thomas Brand,et al.  Heart development: molecular insights into cardiac specification and early morphogenesis. , 2003, Developmental biology.

[108]  K. Yamamura,et al.  Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. , 2002, Development.

[109]  M. Frasch,et al.  Early Signals in Cardiac Development , 2002, Circulation research.

[110]  F. Vitelli,et al.  Tbx1 mutation causes multiple cardiovascular defects and disrupts neural crest and cranial nerve migratory pathways. , 2002, Human molecular genetics.

[111]  G. Mardon,et al.  Dach1, a vertebrate homologue of Drosophila dachshund, is expressed in the developing eye and ear of both chick and mouse and is regulated independently of Pax and Eya genes , 2002, Mechanisms of Development.

[112]  M. Buckingham,et al.  The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. , 2001, Developmental cell.

[113]  Bret J. Pearson,et al.  Drosophila Neuroblasts Sequentially Express Transcription Factors which Specify the Temporal Identity of Their Neuronal Progeny , 2001, Cell.

[114]  M. Kirby,et al.  Conotruncal myocardium arises from a secondary heart field. , 2001, Development.

[115]  G. Mardon,et al.  Characterization of mouse Dach2, a homologue of Drosophila dachshund , 2001, Mechanisms of Development.

[116]  M. Barron,et al.  Requirement for BMP and FGF signaling during cardiogenic induction in non‐precardiac mesoderm is specific, transient, and cooperative , 2000, Developmental dynamics : an official publication of the American Association of Anatomists.

[117]  M. Brand,et al.  Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). , 2000, Development.

[118]  G. Mardon,et al.  Mouse Dach, a homologue of Drosophila dachshund, is expressed in the developing retina, brain and limbs , 1999, Development Genes and Evolution.

[119]  J. Miyazaki,et al.  MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. , 1999, Development.

[120]  G. Mardon,et al.  Dachshund and Eyes Absent Proteins Form a Complex and Function Synergistically to Induce Ectopic Eye Development in Drosophila , 1997, Cell.

[121]  H. Nishida,et al.  Developmental Fates of Larval Tissues after Metamorphosis in AscidianHalocynthia roretzi , 1997 .

[122]  H. Nishida,et al.  Developmental fates of larval tissues after metamorphosis in ascidian Halocynthia roretzi. I. Origin of mesodermal tissues of the juvenile. , 1997, Developmental biology.

[123]  H. Nishida,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. , 1987, Developmental biology.

[124]  E. Grimm CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares , 1987 .

[125]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[126]  N. Satoh,et al.  Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. I. Up to the eight-cell stage. , 1983, Developmental biology.