A single amino acid substitution in PthA of Xanthomonas axonopodis pv. citri altering canker formation on grapefruit leaves

[1]  ColdSpring Harbor,et al.  Cold Spring Harbor Laboratory , 2014, Current Biology.

[2]  Hsin-Cheng Lin,et al.  Characterization of Novel Strains of Citrus Canker Bacterium from Citrus in Taiwan , 2008 .

[3]  C. Vernière,et al.  First Report of Xanthomonas citri pv. citri-A* Causing Citrus Canker on Lime in Cambodia. , 2008, Plant disease.

[4]  S. R. Watson,et al.  First Report of Soybean Rust Caused by Phakopsora pachyrhizi in Nebraska. , 2008, Plant disease.

[5]  D. Gabriel,et al.  All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. , 2007, Molecular plant-microbe interactions : MPMI.

[6]  H. Ishihara,et al.  A pthA Homolog from Xanthomonas axonopodis pv. citri Responsible for Host-Specific Suppression of Virulence , 2007, Journal of bacteriology.

[7]  H. Ishihara,et al.  Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. , 2006, Molecular plant-microbe interactions : MPMI.

[8]  S. Hsu,et al.  Phenotypic and Genetic Characterization of Novel Strains of Xanthomonas axonopodis pv. citri Which Induce Atypical Symptoms on Citrus Leaves in Taiwan , 2005 .

[9]  金 善榮 Studies on the biochemical and physiological effects of sublethal oxidative stress on DNA and cell properties of Escherichia coli , 2005 .

[10]  T. Schubert,et al.  Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. , 2004, Plant disease.

[11]  H. Ishihara,et al.  Functional analysis of the 3′ end of avrBs3/pthA genes from two Xanthomonas species , 2003 .

[12]  U. Bonas,et al.  Getting across—bacterial type III effector proteins on their way to the plant cell , 2002, The EMBO journal.

[13]  R. Michelmore,et al.  Functional studies of the bacterial avirulence protein AvrPto by mutational analysis. , 2001, Molecular plant-microbe interactions : MPMI.

[14]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[15]  H. Leung,et al.  Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Martin,et al.  The Pseudomonas AvrPto Protein Is Differentially Recognized by Tomato and Tobacco and Is Localized to the Plant Plasma Membrane , 2000, Plant Cell.

[17]  P. He,et al.  A cluster of mutations disrupt the avirulence but not the virulence function of AvrPto. , 2000, Molecular plant-microbe interactions : MPMI.

[18]  G. Erdos,et al.  Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death , 1999 .

[19]  W. Zhu,et al.  AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. , 1998, Molecular plant-microbe interactions : MPMI.

[20]  E. Civerolo,et al.  Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia , 1998, European Journal of Plant Pathology.

[21]  F. Artiguenave,et al.  High-efficiency transposon mutagenesis by electroporation of a Pseudomonas fluorescens strain. , 1997, FEMS microbiology letters.

[22]  E. Grohmann,et al.  Determination of specific DNA strand discontinuities with nucleotide resolution in exponentionally growing bacteria harboring rolling circle-replicating plasmids. , 1997, FEMS microbiology letters.

[23]  Ralph,et al.  The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing unstable AVR4 elicitors. , 1997, The Plant cell.

[24]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[25]  D. Gabriel,et al.  Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities , 1995, Journal of bacteriology.

[26]  D. Gabriel,et al.  Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. , 1995, Molecular plant-microbe interactions : MPMI.

[27]  M. Joosten,et al.  Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene , 1994, Nature.

[28]  L. Y. Wang,et al.  Use of phages for identifying the citrus canker bacterium Xanthomonas campestris pv. citri in Taiwan , 1993 .

[29]  S. Swarup,et al.  An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. , 1992, Molecular plant-microbe interactions : MPMI.

[30]  M. L. Huang,et al.  Variations in Xanthomonas campestris pv. citri , 1986 .

[31]  露無 慎二,et al.  Comparison of Nucleotide Sequences of Canker-forming and Non-canker-forming pthA Homologues in Xanthomonas campestris pv. citri. , 1998 .

[32]  G. Stacey,et al.  Plant-Microbe Interactions , 1998, Subcellular Biochemistry.

[33]  J. Leach,et al.  Bacterial avirulence genes. , 1996, Annual review of phytopathology.

[34]  D. Gabriel,et al.  Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family , 1996 .

[35]  D. Gabriel,et al.  Host-specific symptoms and increased release of Xanthomonas citri and X.campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively , 1994 .

[36]  Sarah J. Gurr,et al.  Molecular plant pathology : a practical approach , 1992 .

[37]  S. Swarup,et al.  A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus , 1991 .

[38]  E. Civerolo,et al.  Research relating to the recent outbreak of citrus canker in Florida*. , 1991, Annual review of phytopathology.

[39]  T. A. Brown,et al.  Molecular biology labfax , 1991 .