Protein folds propelled by diversity.

[1]  Max F. Perutz,et al.  Structure and function of haemoglobin: I. A tentative atomic model of horse oxyhaemoglobin , 1965 .

[2]  J. C. Kendrew,et al.  Structure and function of haemoglobin: II. Some relations between polypeptide chain configuration and amino acid sequence , 1965 .

[3]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[4]  A. Lesk,et al.  How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. , 1980, Journal of molecular biology.

[5]  J. N. Varghese,et al.  Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution , 1983, Nature.

[6]  T. Blundell,et al.  Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. , 1987, Protein engineering.

[7]  A. Lesk,et al.  Determinants of a protein fold. Unique features of the globin amino acid sequences. , 1987, Journal of molecular biology.

[8]  K. H. Kalk,et al.  Structure of quinoprotein methylamine dehydrogenase at 2.25 A resolution. , 1989, The EMBO journal.

[9]  J. Richardson,et al.  De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. , 1990, Science.

[10]  T. Blundell,et al.  Definition of general topological equivalence in protein structures. A procedure involving comparison of properties and relationships through simulated annealing and dynamic programming. , 1990, Journal of molecular biology.

[11]  M. McPherson,et al.  Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase , 1994, Nature.

[12]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[13]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[14]  G. Gerisch,et al.  Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. , 1991, The EMBO journal.

[15]  C. Brändén,et al.  The TIM barrel—the most frequently occurring folding motif in proteins , 1991 .

[16]  F. S. Mathews,et al.  The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. , 1992, The Journal of biological chemistry.

[17]  A. Murzin Structural principles for the propeller assembly of β‐sheets: The preference for seven‐fold symmetry , 1992, Proteins.

[18]  S. Crennell,et al.  Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  L. Cooley,et al.  Kelch encodes a component of intercellular bridges in Drosophila egg chambers , 1993, Cell.

[20]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[21]  Raman Nambudripad,et al.  The ancient regulatory-protein family of WD-repeat proteins , 1994, Nature.

[22]  P Bork,et al.  Drosophila kelch motif is derived from a common enzyme fold. , 1994, Journal of molecular biology.

[23]  S. Watabe,et al.  The Warm Temperature Acclimation-related 65-kDa Protein, Wap65, in Goldfish and Its Gene Expression (*) , 1995, The Journal of Biological Chemistry.

[24]  C. Blake,et al.  The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. , 1995, Structure.

[25]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[26]  B. Hazleman,et al.  Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. , 1995, Structure.

[27]  H. R. Faber,et al.  1.8 A crystal structure of the C-terminal domain of rabbit serum haemopexin. , 1995, Structure.

[28]  S. Sprang,et al.  The structure of the G protein heterotrimer Giα1 β 1 γ 2 , 1995, Cell.

[29]  V. Fülöp,et al.  The anatomy of a bifunctional enzyme: Structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1 , 1995, Cell.

[30]  T. Irimura,et al.  Molecular cloning of a novel actin‐binding protein, p57, with a WD repeat and a leucine zipper motif , 1995, FEBS letters.

[31]  Andrew Bohm,et al.  Crystal structure of a GA protein βγdimer at 2.1 Å resolution , 1996, Nature.

[32]  Temple F. Smith,et al.  G Protein Heterodimers: New Structures Propel New Questions , 1996, Cell.

[33]  T. Smith,et al.  Analysis of the physical properties and molecular modeling of Sec13: A WD repeat protein involved in vesicular traffic. , 1996, Biochemistry.

[34]  H. Hamm,et al.  Crystal structure of a G-protein βγ dimer at 2.1 Å resolution , 1996, Nature.

[35]  M. Petříček,et al.  A deduced Thermomonospora curvata protein containing serine/threonine protein kinase and WD-repeat domains , 1996, Journal of bacteriology.

[36]  T. Smith,et al.  Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit. , 1996, Biochemistry.

[37]  H. Hamm,et al.  The 2.0 Å crystal structure of a heterotrimeric G protein , 1996, Nature.

[38]  W. Bode,et al.  The C‐terminal (haemopexin‐like) domain structure of human gelatinase A (MMP2): structural implications for its function , 1996, FEBS letters.

[39]  A. Matsuura,et al.  TLP1: A Gene Encoding a Protein Component of Mammalian Telomerase Is a Novel Member of WD Repeats Family , 1997, Cell.

[40]  S J Ferguson,et al.  Cytochrome cd1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to beta-propeller folds. , 1997, Journal of molecular biology.

[41]  P. Matsudaira,et al.  Modification of Cys-837 identifies an actin-binding site in the beta-propeller protein scruin. , 1997, Molecular biology of the cell.

[42]  S. Steinbacher,et al.  Crystal structure and mechanism of human L‐arginine:glycine amidinotransferase: a mitochondrial enzyme involved in creatine biosynthesis , 1998, The EMBO journal.

[43]  Timothy A. Springer,et al.  Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain , 1997 .

[44]  P. S. Kim,et al.  High-resolution protein design with backbone freedom. , 1998, Science.

[45]  Alfred Wittinghofer,et al.  The 1.7 Å crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller , 1998, Nature.

[46]  László Polgár,et al.  Prolyl Oligopeptidase An Unusual β-Propeller Domain Regulates Proteolysis , 1998, Cell.

[47]  Charlotte M. Deane,et al.  JOY: protein sequence-structure representation and analysis , 1998, Bioinform..

[48]  S. Harrison,et al.  Atomic Structure of Clathrin A β Propeller Terminal Domain Joins an α Zigzag Linker , 1998, Cell.

[49]  T. Springer,et al.  An extracellular beta-propeller module predicted in lipoprotein and scavenger receptors, tyrosine kinases, epidermal growth factor precursor, and extracellular matrix components. , 1998, Journal of molecular biology.

[50]  Sandeep Kumar,et al.  Dissecting α‐helices: Position‐specific analysis of α‐helices in globular proteins , 1998, Proteins.

[51]  C. Gaitatzes,et al.  Folding a WD Repeat Propeller , 1998, The Journal of Biological Chemistry.

[52]  C. Ponting,et al.  A β‐propeller domain within TolB , 1999, Molecular microbiology.

[53]  K. H. Kalk,et al.  The 1.7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. , 1999, Journal of molecular biology.

[54]  A. Sali,et al.  Structural genomics: beyond the Human Genome Project , 1999, Nature Genetics.

[55]  Temple F. Smith,et al.  The WD repeat: a common architecture for diverse functions. , 1999, Trends in biochemical sciences.

[56]  J. Claverie,et al.  Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution. , 1999, Structure.

[57]  R. Huber,et al.  Tachylectin‐2: crystal structure of a specific GlcNAc/GalNAc‐binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus , 1999, The EMBO journal.

[58]  Nam-Chul Ha,et al.  Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states , 2000, Nature Structural Biology.

[59]  S. Carr,et al.  The structure of TolB, an essential component of the tol-dependent translocation system, and its protein-protein interaction with the translocation domain of colicin E9. , 2000, Structure.

[60]  C. Cambillau,et al.  A novel type of catalytic copper cluster in nitrous oxide reductase , 2000, Nature Structural Biology.

[61]  L. Cooley,et al.  The kelch repeat superfamily of proteins: propellers of cell function. , 2000, Trends in cell biology.

[62]  Stephen K. Burley,et al.  Crystal structures of ribosome anti-association factor IF6 , 2000, Nature Structural Biology.