A new proof of Robinson's homeomorphism theorem for pl-normal maps

[1]  Felix E. Browder,et al.  Covering spaces, fibre spaces, and local homeomorphisms , 1954 .

[2]  H. Samelson,et al.  A partition theorem for Euclidean $n$-space , 1958 .

[3]  R. Palais Natural operations on differential forms , 1959 .

[4]  W. Rheinboldt Local mapping relations and global implicit function theorems , 1969 .

[5]  Katta G. Murty,et al.  On the number of solutions to the complementarity problem and spanning properties of complementary cones , 1972 .

[6]  E. S. Kuh,et al.  Piecewise-Linear Theory of Nonlinear Networks , 1972 .

[7]  Werner C. Rheinboldt,et al.  On Piecewise Affine Mappings in $R^n $ , 1975 .

[8]  N. Josephy Newton's Method for Generalized Equations. , 1979 .

[9]  M. Kojima,et al.  On the Relationship Between Conditions that Insure a PL Mapping is a Homeomorphism , 1980, Math. Oper. Res..

[10]  Ruben Schramm On Piecewise Linear Functions and Piecewise Linear Equations , 1980, Math. Oper. Res..

[11]  D. Kuhn,et al.  Piecewise affine bijections of Rn, and the equation Sx+−Tx−=y , 1987 .

[12]  J. J. Moré,et al.  On the identification of active constraints , 1988 .

[13]  Patrick T. Harker,et al.  Newton's method for the nonlinear complementarity problem: A B-differentiable equation approach , 1990, Math. Program..

[14]  Daniel Ralph,et al.  Rank-1 support functionals and the Rank-1 generalized Jacobian, piecewise linear homeomorphisms , 1990 .

[15]  U. Rothblum,et al.  Relationships of properties of piecewise affine maps over ordered fields , 1990 .

[16]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[17]  Stephen M. Robinson,et al.  An Implicit-Function Theorem for a Class of Nonsmooth Functions , 1991, Math. Oper. Res..

[18]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[19]  Daniel Ralph,et al.  Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path Search , 1994, Math. Oper. Res..