SERS nanosensors and nanoreporters: golden opportunities in biomedical applications.

This article provides an overview of recent developments and applications of surface-enhanced Raman scattering (SERS) nanosensors and nanoreporters in our laboratory for use in biochemical monitoring, medical diagnostics, and therapy. The design and fabrication of different types of plasmonics-active nanostructures are discussed. The SERS nanosensors can be used in various applications including pH sensing, protein detection, and gene diagnostics. For DNA detection the 'Molecular Sentinel' nanoprobe can be used as a homogenous bioassay in solution or on a chip platform. Gold nanostars provide an excellent multi-modality theranostic platform, combining Raman and SERS with two-photon luminescence (TPL) imaging as well as photodynamic therapy (PDT), and photothermal therapy (PTT). Plasmonics-enhanced and optically modulated delivery of nanostars into brain tumor in live animals was demonstrated; photothermal treatment of tumor vasculature may induce inflammasome activation, thus increasing the permeability of the blood brain-tumor barrier. The imaging method using TPL of gold nanostars provides an unprecedented spatial selectivity for enhanced targeted nanostar delivery to cortical tumor tissue. A quintuple-modality nanoreporter based on gold nanostars for SERS, TPL, magnetic resonance imaging (MRI), computed tomography (CT), and PTT has recently been developed. The possibility of combining spectral selectivity and high sensitivity of the SERS process with the inherent molecular specificity of bioreceptor-based nanoprobes provides a unique multiplex and selective diagnostic modality. Several examples of optical detection using SERS in combination with other detection and treatment modalities are discussed to illustrate the usefulness and potential of SERS nanosensors and nanoreporters for medical applications.

[1]  Jae-Seung Lee,et al.  Hierarchically branched silver nanostructures (HBAgNSs) as surface plasmon regulating platforms for multiplexed colorimetric DNA detection , 2012 .

[2]  Tuan Vo-Dinh,et al.  Detection of nitro-polynuclear aromatic compounds by surface-enhanced Raman spectrometry , 1986 .

[3]  Tuan Vo-Dinh,et al.  Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  Tuan Vo-Dinh,et al.  Plasmonics enhancement of a luminescent or Raman-active layer in a multilayered metallic nanoshell. , 2009, Applied optics.

[5]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[6]  Tuan Vo-Dinh,et al.  Label-free DNA biosensor based on SERS Molecular Sentinel on Nanowave chip. , 2013, Analytical chemistry.

[7]  Jun Hu,et al.  Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres , 2012 .

[8]  Tuan Vo-Dinh,et al.  Surface-Enhanced Raman Analysis of Benzo[A]Pyrene-DNA Adducts on Silver-Coated Cellulose Substrates , 1987 .

[9]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman spectroscopy using metallic nanostructures , 1998 .

[10]  Yang Liu,et al.  Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection. , 2013, Analytical chemistry.

[11]  Yanlin Song,et al.  Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. , 2011, Chemical communications.

[12]  John T Fourkas,et al.  Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles. , 2005, Nano letters.

[13]  T. Vo‐Dinh,et al.  Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method , 2010, Nanotechnology.

[14]  Sang Yup Lee,et al.  Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. , 2010, Nano letters.

[15]  Christopher G. Khoury,et al.  Plasmonic nanoprobes: from chemical sensing to medical diagnostics and therapy. , 2013, Nanoscale.

[16]  Tuan Vo-Dinh,et al.  pH‐sensing nanostar probe using surface‐enhanced Raman scattering (SERS): theoretical and experimental studies , 2013 .

[17]  D. Leonard,et al.  Molecular sentinel-on-chip for SERS-based biosensing. , 2013, Physical chemistry chemical physics : PCCP.

[18]  Tuan Vo-Dinh,et al.  Plasmonic nanoprobes for intracellular sensing and imaging , 2013, Analytical and Bioanalytical Chemistry.

[19]  T. Vo‐Dinh,et al.  Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. , 2000, Analytical biochemistry.

[20]  M. Porter,et al.  Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. , 2003, Analytical chemistry.

[21]  Sava Sakadžić,et al.  Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources , 2012, Proceedings of the National Academy of Sciences.

[22]  Tuan Vo-Dinh,et al.  NEAR-FIELD SURFACE-ENHANCED RAMAN SPECTROSCOPY OF DYE MOLECULES ADSORBED ON SILVER ISLAND FILMS , 1998 .

[23]  T. Vo‐Dinh,et al.  Surface-enhanced Raman detection of nicotinamide in vitamin tablets , 1998 .

[24]  Chad A Mirkin,et al.  Multiplexed nanoflares: mRNA detection in live cells. , 2012, Analytical chemistry.

[25]  Yang Liu,et al.  Direct analysis of traditional Chinese medicines using Surface-Enhanced Raman Scattering (SERS). , 2014, Drug testing and analysis.

[26]  Sadia Afrin Khan,et al.  Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[27]  T. Vo‐Dinh,et al.  Hybrid top-down and bottom-up fabrication approach for wafer-scale plasmonic nanoplatforms. , 2011, Small.

[28]  S.J. Norton,et al.  Plasmon Resonances of Nanoshells of Spheroidal Shape , 2007, IEEE Transactions on Nanotechnology.

[29]  Mostafa A. El-Sayed,et al.  The golden age: gold nanoparticles for biomedicine. , 2012, Chemical Society reviews.

[30]  B. Martínez-Haya,et al.  UV-Vis-NIR Laser Desorption/Ionization of Synthetic Polymers Assisted by Gold Nanospheres, Nanorods and Nanostars , 2010 .

[31]  Tuan Vo-Dinh,et al.  Cancer gene detection using surface-enhanced Raman scattering (SERS) , 2002 .

[32]  D. A. Stuart,et al.  In vivo glucose measurement by surface-enhanced Raman spectroscopy. , 2006, Analytical chemistry.

[33]  David Erickson,et al.  Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. , 2013, Nanoscale.

[34]  A. Dhawan,et al.  FIB Fabrication of Metallic Nanostructures on End-faces of Cleaved Optical Fibers for Chemical Sensing Applications , 2008, Microscopy and Microanalysis.

[35]  T. Vo‐Dinh,et al.  Surface-enhanced Raman spectrometry of organophosphorus chemical agents. , 1987, Analytical chemistry.

[36]  Lev Dykman,et al.  Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites , 2013, Theranostics.

[37]  Tuan Vo-Dinh,et al.  Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip , 2014, Analytical and Bioanalytical Chemistry.

[38]  Tuan Vo-Dinh,et al.  Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis. , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[39]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[40]  Xin Cai,et al.  Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. , 2013, ACS nano.

[41]  Ji-Xin Cheng,et al.  Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects † , 2009, Photochemistry and photobiology.

[42]  Tuan Vo-Dinh,et al.  Surface-Enhanced Raman Scattering Detection and Tracking of Nanoprobes: Enhanced Uptake and Nuclear Targeting in Single Cells , 2010, Applied spectroscopy.

[43]  T. Vo‐Dinh,et al.  Optical sensor for the detection of caspase-9 activity in a single cell. , 2004, Journal of the American Chemical Society.

[44]  I. Tannock,et al.  Acid pH in tumors and its potential for therapeutic exploitation. , 1989, Cancer research.

[45]  Tuan Vo-Dinh,et al.  Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. , 2014, Nanoscale.

[46]  Z. Jiang,et al.  Silicon-based reproducible and active surface-enhanced Raman scattering substrates for sensitive, specific, and multiplex DNA detection , 2012 .

[47]  May D. Wang,et al.  Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. , 2010, Analytical chemistry.

[48]  Tuan Vo-Dinh,et al.  Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. , 2006, Nanomedicine : nanotechnology, biology, and medicine.

[49]  Tuan Vo-Dinh,et al.  Nanobiosensing Using Plasmonic Nanoprobes , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[50]  Tuan Vo-Dinh,et al.  In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[51]  Tuan Vo-Dinh,et al.  Surface-Enhanced-Raman-Scattering-Inducing Nanoprobe for Spectrochemical Analysis , 2004, Applied spectroscopy.

[52]  M. Wabuyele,et al.  Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene , 2010, Analytical and bioanalytical chemistry.

[53]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman spectrometry for trace organic analysis , 1984 .

[54]  Tuan Vo-Dinh,et al.  Spectral Characterization and Intracellular Detection of Surface-Enhanced Raman Scattering (SERS)-Encoded Plasmonic Gold Nanostars. , 2013, Journal of Raman spectroscopy : JRS.

[55]  Tuan Vo-Dinh,et al.  Silver particles on stochastic quartz substrates providing tenfold increase in Raman enhancement , 1985 .

[56]  Chunhai Fan,et al.  Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. , 2009, Angewandte Chemie.

[57]  Tuan Vo-Dinh,et al.  Titanium Dioxide Based Substrate for Optical Monitors in Surface-Enhanced Raman Scattering Analysis , 1989 .

[58]  Tuan Vo-Dinh,et al.  Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids. , 2008, Journal of nanophotonics.

[59]  Aldo Roda,et al.  Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes , 2012, Analytical and Bioanalytical Chemistry.

[60]  W. Smith,et al.  Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. , 2007, Angewandte Chemie.

[61]  T. Vo-Dinh,et al.  Investigation of Experimental Parameters for Surface-Enhanced Raman Scattering (SERS) Using Silver-Coated Microsphere Substrates , 1987 .

[62]  C. Fan,et al.  A molecular beacon-based signal-off surface-enhanced Raman scattering strategy for highly sensitive, reproducible, and multiplexed DNA detection. , 2013, Small.

[63]  M. Wabuyele,et al.  Surface-enhanced Raman scattering for medical diagnostics and biological imaging , 2005 .

[64]  Duncan Graham,et al.  Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). , 2008, The Analyst.

[65]  T. Vo‐Dinh,et al.  Recent advances in surface-enhanced Raman spectrometry for chemical analysis , 1988 .

[66]  Lingwen Zeng,et al.  A universal biosensor for multiplex DNA detection based on hairpin probe assisted cascade signal amplification. , 2013, Chemical communications.

[67]  T. Vo‐Dinh,et al.  Surface-enhanced Raman spectrometry of chlorinated pesticides , 1988 .

[68]  Tuan Vo-Dinh,et al.  Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[69]  M. Natan,et al.  Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. , 2008, Journal of the American Chemical Society.

[70]  T. Vo‐Dinh,et al.  Surface-enhanced Raman gene probes. , 1994, Analytical chemistry.

[71]  Tuan Vo-Dinh,et al.  Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. , 2013, Nanoscale.

[72]  Shulin Zhao,et al.  Highly sensitive multiplexed DNA detection using multi-walled carbon nanotube-based multicolor nanobeacon. , 2013, Talanta.

[73]  Tuan Vo-Dinh,et al.  Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell , 2000, Nature Biotechnology.

[74]  T. Vo‐Dinh,et al.  Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study , 2013 .

[75]  Zhe Wang,et al.  Single Continuous Wave Laser Induced Photodynamic/Plasmonic Photothermal Therapy Using Photosensitizer‐Functionalized Gold Nanostars , 2013, Advanced materials.

[76]  Tuan Vo-Dinh,et al.  Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes , 2009, Nanotechnology.

[77]  Tuan Vo-Dinh,et al.  Plasmonic nanoprobes for SERS biosensing and bioimaging , 2009, Journal of biophotonics.

[78]  Tuan Vo-Dinh,et al.  Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[79]  Miao Wang,et al.  In vitro detection of beta amyloid exploiting surface enhanced Raman scattering (SERS) using a nanofluidic biosensor , 2008, SPIE BiOS.

[80]  W. Arap,et al.  In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters. , 2006, Analytical chemistry.

[81]  T. Vo‐Dinh,et al.  Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers. , 2009, Optics express.

[82]  Duncan Graham,et al.  Quantitative SERRS immunoassay for the detection of human PSA. , 2009, The Analyst.

[83]  R. Medzhitov,et al.  Type I interferons in host defense. , 2006, Immunity.

[84]  H. Beier,et al.  Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells , 2007 .

[85]  Christopher G. Khoury,et al.  Plasmonic Gold Nanostars: A Potential Agent for Molecular Imaging and Cancer Therapy , 2012 .

[86]  Chunhai Fan,et al.  Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. , 2012, ACS nano.

[87]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[88]  T. Vo‐Dinh,et al.  Silver-Coated Alumina as a New Medium for Surfaced-Enhanced Raman Scattering Analysis , 1989 .

[89]  Martin Moskovits,et al.  Persistent misconceptions regarding SERS. , 2013, Physical chemistry chemical physics : PCCP.

[90]  Tuan Vo-Dinh,et al.  Surface-enhanced Raman spectrometry with silver particles on stochastic-post substrates , 1986 .

[91]  Molly K. Gregas,et al.  Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[92]  T. Vo‐Dinh,et al.  Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. , 2013, Molecular pharmaceutics.

[93]  T. Vo‐Dinh,et al.  Surface-enhanced Raman gene probe for HIV detection. , 1998, Analytical chemistry.

[94]  Tuan Vo-Dinh,et al.  Development of Hybrid Silver-Coated Gold Nanostars for Nonaggregated Surface-Enhanced Raman Scattering , 2014, The journal of physical chemistry. C, Nanomaterials and interfaces.

[95]  Tuan Vo-Dinh,et al.  TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. , 2012, Journal of the American Chemical Society.

[96]  Tuan Vo-Dinh,et al.  Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging , 2012, Nanotechnology.

[97]  C. Fan,et al.  Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. , 2012, Analytical chemistry.

[98]  T. Vo‐Dinh,et al.  Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection. , 2011, Small.

[99]  George C Schatz,et al.  Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. , 2010, Journal of the American Chemical Society.

[100]  Robert J Gillies,et al.  Imaging pH and metastasis , 2011, NMR in biomedicine.

[101]  Tuan Vo-Dinh,et al.  Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. , 2005, Analytical chemistry.

[102]  Joseph Irudayaraj,et al.  Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. , 2007, Analytical chemistry.

[103]  M. Wabuyele,et al.  Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art , 2006 .

[104]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[105]  Liesbet Lagae,et al.  Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. , 2011, ACS nano.

[106]  Tuan Vo-Dinh,et al.  SERS-based plasmonic nanobiosensing in single living cells , 2009, Analytical and bioanalytical chemistry.

[107]  Tuan Vo-Dinh,et al.  Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications , 2008 .

[108]  Tuan Vo-Dinh,et al.  Optical response of linear chains of metal nanospheres and nanospheroids. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[109]  Dan Luo,et al.  Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes , 2005, Nature Biotechnology.

[110]  H. Tan,et al.  Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect. , 2011, Journal of the American Chemical Society.

[111]  Jeong-Woo Choi,et al.  Surface-enhanced Raman scattering of dopamine on self-assembled gold nanoparticles. , 2011, Journal of nanoscience and nanotechnology.

[112]  Y. Israel Theoretical and practical aspects of acid-base determinants by spectrophotometric flow-injection analysis , 1988 .

[113]  A. P. Leonov,et al.  Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores. , 2009, Journal of the American Chemical Society.