A multiscale approach for spatially inhomogeneous disease dynamics

In this paper we introduce an agent-based epidemiological model that generalizes the classical SIR model by Kermack and McKendrick. We further provide a multiscale approach to the derivation of a macroscopic counterpart via the mean-field limit. The chain of equations acquired via the multiscale approach are investigated, analytically as well as numerically. The outcome of these results provide strong evidence of the models' robustness and justifies their applicability in describing disease dynamics, in particularly when mobility is involved.

[1]  J. Greeff,et al.  Dispersal , 2019, The African Wild Dog.

[2]  D. Morale,et al.  An interacting particle system modelling aggregation behavior: from individuals to populations , 2005, Journal of mathematical biology.

[3]  R. L. Dobrushin,et al.  Vlasov equations , 1979 .

[4]  조준학,et al.  Growth of human bronchial epithelial cells at an air-liquid interface alters the response to particle exposure , 2013, Particle and Fibre Toxicology.

[5]  A. Sznitman Topics in propagation of chaos , 1991 .

[6]  A. Roddam Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation O Diekmann and JAP Heesterbeek, 2000, Chichester: John Wiley pp. 303, £39.95. ISBN 0-471-49241-8 , 2001 .

[7]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[8]  D. Morale,et al.  Modeling and simulating animal grouping : Individual-based models , 2001, Future Gener. Comput. Syst..

[9]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[10]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[11]  Marcello Edoardo Delitala,et al.  Generalized kinetic theory approach to modeling spread- and evolution of epidemics , 2004 .

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  Axel Klar,et al.  Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations , 2014 .

[14]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[15]  Janet Efstathiou,et al.  Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach , 2013, J. Oper. Res. Soc..

[16]  Karima R. Nigmatulina,et al.  The scaling of contact rates with population density for the infectious disease models. , 2013, Mathematical biosciences.

[17]  Sergei Petrovskii,et al.  Dispersal, Individual Movement and Spatial Ecology , 2013 .

[18]  R. Pinnau,et al.  IDENTIFICATION OF TEMPERATURE-DEPENDENT PARAMETERS IN LASER-INTERSTITIAL THERMO THERAPY , 2012 .

[19]  C. Villani Optimal Transport: Old and New , 2008 .

[20]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[21]  C. Bernido,et al.  An analytic method for agent-based modeling of spatially inhomogeneous disease dynamics , 2018 .

[22]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[23]  Magali Lécureux-Mercier,et al.  Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow , 2011, 1112.4132.

[24]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[25]  Frank Diederich,et al.  Mathematical Epidemiology Of Infectious Diseases Model Building Analysis And Interpretation , 2016 .

[26]  J. O. Irwin,et al.  MATHEMATICAL EPIDEMIOLOGY , 1958 .

[27]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[28]  Dmitri Finkelshtein,et al.  Vlasov Scaling for Stochastic Dynamics of Continuous Systems , 2010 .

[29]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[30]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[31]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[32]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[33]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[34]  T. Liggett Interacting Particle Systems , 1985 .

[35]  R. Durrett Stochastic Calculus: A Practical Introduction , 1996 .

[36]  Marcello Edoardo Delitala,et al.  MODELLING EPIDEMICS AND VIRUS MUTATIONS BY METHODS OF THE MATHEMATICAL KINETIC THEORY FOR ACTIVE PARTICLES , 2009 .

[37]  Dmitri Finkelshtein,et al.  Vlasov scaling for the Glauber dynamics in continuum , 2010 .

[38]  D. Brockmann,et al.  Human Mobility and Spatial Disease Dynamics , 2010 .

[39]  Axel Klar,et al.  SELF-PROPELLED INTERACTING PARTICLE SYSTEMS WITH ROOSTING FORCE , 2010 .