Static, seismic and stability analyses of a prototype wind turbine steel tower

Selected results of a study concerning the load bearing capacity and the seismic behavior of a prototype steel tower for a 450 kW wind turbine with a horizontal power transmission axle are presented. The main load bearing structure of the steel tower rises to almost 38 m high and consists of thin-wall cylindrical and conical parts, of varying diameters and wall thicknesses, which are linked together by bolted circular rings. The behavior and the load capacity of the structure have been studied with the aid of a refined finite element and other simplified models recommended by appropriate building codes. The structure is analyzed for static and seismic loads representing the effects of gravity, the operational and survival aerodynamic conditions, and possible site-dependent seismic motions. Comparative studies have been performed on the results of the above analyses and some useful conclusions are drawn pertaining to the effectiveness and accuracy of the various models used in this work.