A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets
暂无分享,去创建一个
[1] Vivienne Sze,et al. 14.5 Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks , 2016, ISSCC.
[2] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[3] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[4] Joel Emer,et al. Eyeriss: an Energy-efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks Accessed Terms of Use , 2022 .
[5] Luca Benini,et al. Origami: A Convolutional Network Accelerator , 2015, ACM Great Lakes Symposium on VLSI.
[6] Marian Verhelst,et al. Energy-efficient ConvNets through approximate computing , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).