Robust Inference for State-Space Models with Skewed Measurement Noise

Filtering and smoothing algorithms for linear discrete- time state-space models with skewed and heavy-tailed measurement noise are presented. The algorithms use a variational Bayes approximation of the posterior distribution of models that have normal prior and skew- t-distributed measurement noise. The proposed filter and smoother are compared with conventional low- complexity alternatives in a simulated pseudorange positioning scenario. In the simulations the proposed methods achieve better accuracy than the alternative methods, the computational complexity of the filter being roughly 5 to 10 times that of the Kalman filter.

[1]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[2]  Prashant Krishnamurthy,et al.  Analysis of WLAN's received signal strength indication for indoor location fingerprinting , 2012, Pervasive Mob. Comput..

[3]  Chris Rizos,et al.  The International GNSS Service in a changing landscape of Global Navigation Satellite Systems , 2009 .

[4]  Bor-Sen Chen,et al.  Mobile Location Estimator in a Rough Wireless Environment Using Extended Kalman-Based IMM and Data Fusion , 2009, IEEE Transactions on Vehicular Technology.

[5]  A. Azzalini A class of distributions which includes the normal ones , 1985 .

[6]  Tsung I. Lin,et al.  Robust mixture modeling using multivariate skew t distributions , 2010, Stat. Comput..

[7]  D. Dey,et al.  A General Class of Multivariate Skew-Elliptical Distributions , 2001 .

[8]  Arjun K. Gupta Multivariate skew t-distribution , 2003 .

[9]  Thomas B. Schön,et al.  Indoor Positioning Using Ultrawideband and Inertial Measurements , 2015, IEEE Transactions on Vehicular Technology.

[10]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[11]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[12]  Fredrik Gustafsson,et al.  A Student's t filter for heavy tailed process and measurement noise , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[13]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[14]  Yulia V. Marchenko Multivariate Skew-t Distributions in Econometrics and Environmetrics , 2012 .

[15]  Eduardo Mario Nebot,et al.  Approximate Inference in State-Space Models With Heavy-Tailed Noise , 2012, IEEE Transactions on Signal Processing.

[16]  F. Gustafsson,et al.  Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements , 2005, IEEE Signal Processing Magazine.

[17]  Fredrik Gustafsson,et al.  Variational Iterations for Filtering and Smoothing with skew-t measurement noise , 2015 .

[18]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[19]  S. Sahu,et al.  A new class of multivariate skew distributions with applications to bayesian regression models , 2003 .

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[22]  D. Barr,et al.  Mean and Variance of Truncated Normal Distributions , 1999 .

[23]  Martin Eling,et al.  Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models? , 2012 .

[24]  Sharon X. Lee,et al.  EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm , 2012, 1211.5290.

[25]  Ronald K. Pearson,et al.  Outliers in process modeling and identification , 2002, IEEE Trans. Control. Syst. Technol..

[26]  D.G. Tzikas,et al.  The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.

[27]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[28]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[29]  M. Cortina-Borja,et al.  Modelling psychiatric measures using Skew-Normal distributions , 2010, European Psychiatry.

[30]  S. Frühwirth-Schnatter,et al.  Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. , 2010, Biostatistics.

[31]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[32]  Simo Särkkä,et al.  Recursive outlier-robust filtering and smoothing for nonlinear systems using the multivariate student-t distribution , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[33]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[34]  M. Wand,et al.  Mean field variational bayes for elaborate distributions , 2011 .