As you like it: Localization via paired comparisons

Suppose that we wish to estimate a vector $\mathbf{x}$ from a set of binary paired comparisons of the form "$\mathbf{x}$ is closer to $\mathbf{p}$ than to $\mathbf{q}$" for various choices of vectors $\mathbf{p}$ and $\mathbf{q}$. The problem of estimating $\mathbf{x}$ from this type of observation arises in a variety of contexts, including nonmetric multidimensional scaling, "unfolding," and ranking problems, often because it provides a powerful and flexible model of preference. We describe theoretical bounds for how well we can expect to estimate $\mathbf{x}$ under a randomized model for $\mathbf{p}$ and $\mathbf{q}$. We also present results for the case where the comparisons are noisy and subject to some degree of error. Additionally, we show that under a randomized model for $\mathbf{p}$ and $\mathbf{q}$, a suitable number of binary paired comparisons yield a stable embedding of the space of target vectors. Finally, we also that we can achieve significant gains by adaptively changing the distribution for choosing $\mathbf{p}$ and $\mathbf{q}$.

[1]  U. Böckenholt,et al.  Modeling Preference Data , 2008 .

[2]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[3]  R. Buck Partition of Space , 1943 .

[4]  M. C. Spruill,et al.  Asymptotic Distribution of Coordinates on High Dimensional Spheres , 2007 .

[5]  Yu Lu,et al.  Individualized rank aggregation using nuclear norm regularization , 2014, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[6]  Mark A. Davenport,et al.  Lost without a compass: Nonmetric triangulation and landmark multidimensional scaling , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[7]  Mark A. Davenport,et al.  The geometry of random paired comparisons , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[8]  David J. Kriegman,et al.  Generalized Non-metric Multidimensional Scaling , 2007, AISTATS.

[9]  Laurent Jacques,et al.  Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors , 2011, IEEE Transactions on Information Theory.

[10]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[11]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[12]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[13]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[14]  Richard G. Baraniuk,et al.  Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals , 2014, IEEE Transactions on Information Theory.

[15]  Mark A. Davenport,et al.  Binary stable embedding via paired comparisons , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[16]  Nebojsa Jojic,et al.  Efficient Ranking from Pairwise Comparisons , 2013, ICML.

[17]  Mark A. Davenport,et al.  Localizing users and items from paired comparisons , 2016, 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP).

[18]  Nir Ailon,et al.  Active Learning Ranking from Pairwise Preferences with Almost Optimal Query Complexity , 2011, NIPS.

[19]  Loïc Grenié,et al.  Inequalities for the beta function , 2015 .

[20]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[21]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[22]  Robert D. Nowak,et al.  Low-dimensional embedding using adaptively selected ordinal data , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[24]  Martin J. Wainwright,et al.  Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence , 2015, J. Mach. Learn. Res..

[25]  M. Giaquinta,et al.  Mathematical Analysis: An Introduction to Functions of Several Variables , 2004 .

[26]  Ideal Point Versus Attribute Models of Brand Preference: a Comparison of Predictive Validity , 1975 .

[27]  Bernhard Schölkopf,et al.  A tutorial on ν-support vector machines: Research Articles , 2005 .

[28]  Robert D. Nowak,et al.  Active Ranking using Pairwise Comparisons , 2011, NIPS.

[29]  Sewoong Oh,et al.  Collaboratively Learning Preferences from Ordinal Data , 2015, NIPS.

[30]  Bernhard Schölkopf,et al.  Extension of the nu-SVM range for classification , 2003 .

[31]  Miklós Simonovits,et al.  Deterministic and randomized polynomial-time approximation of radii , 2001 .

[32]  Jin Zhang,et al.  Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons , 2015, ICML.

[33]  C H COOMBS,et al.  Psychological scaling without a unit of measurement. , 1950, Psychological review.

[34]  Brian Eriksson,et al.  Learning to Top-K Search using Pairwise Comparisons , 2013, AISTATS.

[35]  Feng Qi (祁锋) Bounds for the Ratio of Two Gamma Functions , 2009 .

[36]  L. Thurstone A law of comparative judgment. , 1994 .

[37]  Rayan Saab,et al.  One-Bit Compressive Sensing With Norm Estimation , 2014, IEEE Transactions on Information Theory.

[38]  Filip Radlinski,et al.  Active exploration for learning rankings from clickthrough data , 2007, KDD '07.