Extreme learning machine: Theory and applications

[1]  Chee Kheong Siew,et al.  Real-time learning capability of neural networks , 2006, IEEE Trans. Neural Networks.

[2]  Chee Kheong Siew,et al.  Can threshold networks be trained directly? , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Dianhui Wang,et al.  Protein sequence classification using extreme learning machine , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[4]  Robert F. Stengel,et al.  Smooth function approximation using neural networks , 2005, IEEE Transactions on Neural Networks.

[5]  C. Siew,et al.  Extreme Learning Machine with Randomly Assigned RBF Kernels , 2005 .

[6]  Chee Kheong Siew,et al.  Extreme learning machine: RBF network case , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[7]  Guang-Bin Huang,et al.  Learning capability and storage capacity of two-hidden-layer feedforward networks , 2003, IEEE Trans. Neural Networks.

[8]  D. Serre Matrices: Theory and Applications , 2002 .

[9]  E. Romero,et al.  A new incremental method for function approximation using feed-forward neural networks , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[10]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[11]  Samy Bengio,et al.  A Parallel Mixture of SVMs for Very Large Scale Problems , 2001, Neural Computation.

[12]  Guang-Bin Huang,et al.  Classification ability of single hidden layer feedforward neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[13]  W. Godwin Article in Press , 2000 .

[14]  Peter L. Bartlett,et al.  The Sample Complexity of Pattern Classification with Neural Networks: The Size of the Weights is More Important than the Size of the Network , 1998, IEEE Trans. Inf. Theory.

[15]  Guang-Bin Huang,et al.  Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions , 1998, IEEE Trans. Neural Networks.

[16]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[17]  Gunnar Rätsch,et al.  An Improvement of AdaBoost to Avoid Overfitting , 1998, ICONIP.

[18]  Shin'ichi Tamura,et al.  Capabilities of a four-layered feedforward neural network: four layers versus three , 1997, IEEE Trans. Neural Networks.

[19]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[20]  Tony R. Martinez,et al.  Heterogeneous radial basis function networks , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[21]  Christopher J. Merz,et al.  UCI Repository of Machine Learning Databases , 1996 .

[22]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[23]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[24]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[25]  D. W. Lewis Matrix theory , 1991 .

[26]  K. S. Banerjee,et al.  Generalized Inverse of Matrices and Its Applications , 1973 .

[27]  A. Mayne Generalized Inverse of Matrices and its Applications , 1972 .