On the False-Positive Rate of Statistical Equipment Comparisons Based on the Kruskal–Wallis $H$ Statistic
暂无分享,去创建一个
[1] H. Melzner,et al. BEX-a novel wafer yield distribution model and analysis , 2004, 2004 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (IEEE Cat. No.04CH37530).
[2] Camelia Hora,et al. An effective diagnosis method to support yield improvement , 2002, Proceedings. International Test Conference.
[3] M. V. D. Wiel,et al. Exact distributions of distribution-free test statistics , 2000 .
[4] Exact distributions of multiple comparisons rank statistics , 2002 .
[5] W. Kruskal,et al. Use of Ranks in One-Criterion Variance Analysis , 1952 .
[6] D W Zimmerman,et al. Statistical Significance Levels of Nonparametric Tests Biased by Heterogeneous Variances of Treatment Groups , 2000, The Journal of general psychology.
[7] T.J. Lahey,et al. Attack and resolution of a major product-specific systematic yield loss problem , 2004, 2004 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (IEEE Cat. No.04CH37530).
[8] David L. Wallace,et al. Simplified Beta-Approximations to the Kruskal-Wallis H Test , 1959 .
[9] David J. Sheskin,et al. Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .
[10] R. Bergmann,et al. Different Outcomes of the Wilcoxon—Mann—Whitney Test from Different Statistics Packages , 2000 .
[11] John D. Spurrier,et al. On the null distribution of the Kruskal–Wallis statistic , 2003 .
[12] Ronald L. Iman,et al. New approximations to the exact distribution of the kruskal-wallis test statistic , 1976 .
[13] J. McNames,et al. Locating disturbances in semiconductor manufacturing with stepwise regression , 2005, IEEE Transactions on Semiconductor Manufacturing.
[14] P.A.J. Volf,et al. Simplified implementation of the windowing method for systematic and random yield calculation , 2004, IEEE Transactions on Semiconductor Manufacturing.