Fluorine-18 labelling of small interfering RNAs (siRNAs) for PET imaging†

Small interfering RNAs (siRNAs), a class of macromolecules constituted by the association of two single-stranded ribonucleic acids of short sequences, have been labelled with the positron-emitter fluorine-18 (T1/2: 109.8 min). The strategy involves (1) prosthetic conjugation of a single-stranded oligonucleotide with [18F]FPyBrA (N-[3-(2-[18F]fluoropyridin-3-yloxy)-propyl]-2-bromoacetamide) followed by (2) formation of the target duplex by annealing with the complementary sequence, therefore, permitting parallel and combinatorial preparation of [18F]siRNAs. Pure fluorine-18-labelled siRNAs (0.55–1.11 GBq, specific activity: 74–148 GBq/µmol at EOB) could be obtained within 165 min starting from 37.0 GBq of starting [18F]fluoride (1.5–3.0%, non-decay-corrected isolated yields). Copyright © 2007 John Wiley & Sons, Ltd.

[1]  L. Lim,et al.  Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. , 2006, RNA.

[2]  A. Lee,et al.  Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  F. Dollé Fluorine-18-labelled fluoropyridines: advances in radiopharmaceutical design. , 2005, Current pharmaceutical design.

[4]  W. Filipowicz,et al.  RNAi: The Nuts and Bolts of the RISC Machine , 2005, Cell.

[5]  R. Griffey,et al.  Positional effect of chemical modifications on short interference RNA activity in mammalian cells. , 2005, Journal of medicinal chemistry.

[6]  R. Boisgard,et al.  In vivo biodistribution and pharmacokinetics of 18F-labelled Spiegelmers: a new class of oligonucleotidic radiopharmaceuticals , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[7]  J. Rossi,et al.  Sensing the danger in RNA , 2005, Nature Medicine.

[8]  R. Boisgard,et al.  1-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]pyrrole-2,5-dione: design, synthesis, and radiosynthesis of a new [18F]fluoropyridine-based maleimide reagent for the labeling of peptides and proteins. , 2005, Bioconjugate chemistry.

[9]  S. Akira,et al.  Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7 , 2005, Nature Medicine.

[10]  Guiliang Tang,et al.  siRNA and miRNA: an insight into RISCs. , 2005, Trends in biochemical sciences.

[11]  B. Tavitian,et al.  Design and synthesis of a new [18F]fluoropyridine-based haloacetamide reagent for the labeling of oligonucleotides: 2-bromo-N-[3-(2-[18F]fluoropyridin-3-yloxy)propyl]acetamide. , 2004, Bioconjugate chemistry.

[12]  R. Boisgard,et al.  Fluorine‐18‐ and iodine‐125‐labelling of spiegelmers , 2003 .

[13]  R. Boisgard,et al.  Fluorine‐18 labelling of oligonucleotides: Prosthetic labelling at the 5′‐end using the N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide reagent , 2003 .

[14]  T. Rana,et al.  siRNA function in RNAi: a chemical modification analysis. , 2003, RNA.

[15]  E. Moss,et al.  Small-interfering RNAs in the radar of the interferon system , 2003, Nature Cell Biology.

[16]  F. Dollé,et al.  2-, 3- and 4-[18F]Fluoropyridine by no-carrier-added nucleophilic aromatic substitution with K[18F]F-K222- a comparative study: 2-, 3- and 4-[18F] FLUOROPYRIDINE , 2003 .

[17]  B. Tavitian,et al.  Modulation of the pharmacokinetic properties of PNA: preparation of galactosyl, mannosyl, fucosyl, N-acetylgalactosaminyl, and N-acetylglucosaminyl derivatives of aminoethylglycine peptide nucleic acid monomers and their incorporation into PNA oligomers. , 2003, Bioconjugate chemistry.

[18]  Robert H. Silverman,et al.  Activation of the interferon system by short-interfering RNAs , 2003, Nature Cell Biology.

[19]  David R Corey,et al.  RNA interference in mammalian cells by chemically-modified RNA. , 2003, Biochemistry.

[20]  B. Tavitian In vivo imaging with oligonucleotides for diagnosis and drug development , 2003, Gut.

[21]  A. Klippel,et al.  Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. , 2003, Nucleic acids research.

[22]  M. Amarzguioui,et al.  Tolerance for mutations and chemical modifications in a siRNA. , 2003, Nucleic acids research.

[23]  A. Blum,et al.  Treatment of Helicobacter pylori in functional dyspepsia resistant to conventional management: a double blind randomised trial with a six month follow up , 2003, Gut.

[24]  Raphaël Boisgard,et al.  Labelled oligonucleotides as radiopharmaceuticals: pitfalls, problems and perspectives. , 2002, Current pharmaceutical design.

[25]  B. Tavitian,et al.  Characterization of a Synthetic Anionic Vector for Oligonucleotide Delivery Using in Vivo Whole Body Dynamic Imaging , 2002, Pharmaceutical Research.

[26]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[27]  Okarvi Sm,et al.  Recent progress in fluorine-18 labelled peptide radiopharmaceuticals , 2001 .

[28]  C. Crouzel,et al.  General method to label antisense oligonucleotides with radioactive halogens for pharmacological and imaging studies. , 2000, Bioconjugate chemistry.

[29]  C. Crouzel,et al.  Fluorine-18 labeling of oligonucleotides bearing chemically—modified ribose—phosphate backbones , 2000 .

[30]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[31]  C. Crouzel,et al.  2‐[18F]fluoropyridines by no‐carrier‐added nucleophilic aromatic substitution with [18F]FK‐K222—a comparative study , 1999 .

[32]  C. Crouzel,et al.  In Vivo Imaging and Pharmacokinetics of Oligonucleotides , 1999 .

[33]  C Crouzel,et al.  Synthesis and nicotinic acetylcholine receptor in vivo binding properties of 2-fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine: a new positron emission tomography ligand for nicotinic receptors. , 1999, Journal of medicinal chemistry.

[34]  C. Crouzel,et al.  Synthesis of 2‐[18F]fluoro‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine, a highly potent radioligand for in vivo imaging central nicotinic acetylcholine receptors , 1998 .

[35]  Bernard Bendriem,et al.  In vivo imaging of oligonucleotides with positron emission tomography , 1998, Nature Medicine.

[36]  C. Crouzel,et al.  A general method for labeling oligodeoxynucleotides with 18F for in vivo PET imaging , 1997 .

[37]  Richard A. Jorgensen,et al.  Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequences , 1996, Plant Molecular Biology.

[38]  Wilbur Ds Radiohalogenation of proteins: An overview of radionuclides, labeling methods and reagents for conjugate labeling , 1992 .

[39]  C. Napoli,et al.  Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. , 1990, The Plant cell.

[40]  C. Dence,et al.  Fluorine-18 labeling of proteins. , 1987, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[41]  H. Coenen,et al.  Preparation of N.C.A. [17‐18F]‐fluoroheptadecanoic acid in high yields via aminopolyether supported, nucleophilic fluorination , 1986 .

[42]  K. Hamacher,et al.  Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[43]  F. Dollé [18F]fluoropyridines: From conventional radiotracers to the labeling of macromolecules such as proteins and oligonucleotides. , 2007, Ernst Schering Research Foundation workshop.

[44]  R. Boisgard,et al.  Fluorine‐18 labelling of PNAs functionalized at their pseudo‐peptidic backbone for imaging studies with PET , 2005 .

[45]  B. Tavitian Oligonucleotides as radiopharmaceuticals. , 2005, Ernst Schering Research Foundation workshop.

[46]  R. Plasterk,et al.  The genetics of RNA silencing. , 2002, Annual review of genetics.

[47]  B. Tavitian,et al.  Fluorine-18 labeling of peptide nucleic acids , 2002 .