Canonical number systems, counting automata and fractals
暂无分享,去创建一个
[1] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[2] Yang Wang,et al. Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .
[3] Fractals and Number Systems in Real Quadratic Number Fields , 2001 .
[4] Christoph Bandt. Self-Similar Tilings and Patterns Described by Mappings , 1997 .
[5] Andrew Haas,et al. Self-Similar Lattice Tilings , 1994 .
[6] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[7] Kenneth Falconer,et al. The dimension of self-affine fractals II , 1992, Mathematical Proceedings of the Cambridge Philosophical Society.
[8] K. Falconer. Techniques in fractal geometry , 1997 .
[9] V. Sirvent. Identifications and Dimension of the Rauzy Fractal , 1997 .
[10] Yang WANGAbstract,et al. GEOMETRY OF SELF � AFFINE TILES , 1998 .
[11] Richard Kenyon. The construction of self-similar tilings , 1995 .
[12] Christiane Frougny. On-line finite automata for addition in some numeration systems , 1999, RAIRO Theor. Informatics Appl..
[13] Jean Berstel,et al. Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.
[14] H. Prodinger,et al. The Sum‐of‐Digits Function for Complex Bases , 1998 .
[15] Yang Wang,et al. GEOMETRY OF SELF-AFFINE TILES II , 1999 .
[16] Y. Peres,et al. Sixty Years of Bernoulli Convolutions , 2000 .
[17] Berndt Farwer,et al. ω-automata , 2002 .
[18] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[19] Robert F. Tichy,et al. Fractal properties of number systems , 2001, Period. Math. Hung..
[20] J. Lagarias. Self-Affine Tiles in , 1994 .
[21] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[22] Steven P. Lalley,et al. Falconer's formula for the Hausdorff dimension of a self-affine set in R2 , 1995, Ergodic Theory and Dynamical Systems.
[23] J. J. P. Veerman,et al. Hausdorff Dimension of Boundaries of Self-Affine Tiles In R N , 1997, math/9701215.
[24] J. Keesling,et al. The Hausdorff Dimension of the Boundary of a Self‐Similar Tile , 2000 .
[25] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[26] Yang Wang,et al. Hausdorff Dimension of Self‐Similar Sets with Overlaps , 2001 .
[27] Yuval Peres,et al. Hausdorff dimensions of sofic affine-invariant sets , 1996 .
[28] I. Kátai,et al. Number Systems and Fractal Geometry , 1992 .
[29] Béla Kovács. Canonical number systems in algebraic number fields , 1981 .
[30] Shigeki Akiyama. A self-similar tiling generated by the minimal Pisot number , 1998 .
[31] Steven P. Lalley,et al. Hausdorff and box dimensions of certain self-affine fractals , 1992 .
[32] Steven G. Krantz. The Number Systems , 2002 .
[33] I. Hueter,et al. Falconer's Formula for the Hausdorr Dimension of a Self{aane Set in R 2 , 1993 .
[34] Randolph B. Tarrier,et al. Groups , 1973, Algebra.
[35] Michael Baake,et al. Digit tiling of euclidean space , 2000 .
[36] D. Hardin,et al. Dimensions associated with recurrent self-similar sets , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[37] I. Kátai,et al. Canonical number systems in imaginary quadratic fields , 1981 .
[38] Kenneth Falconer,et al. The Hausdorff dimension of self-affine fractals , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.