Canonical number systems, counting automata and fractals

In this paper we study properties of the fundamental domain [Fscr ]β of number systems, which are defined in rings of integers of number fields. First we construct addition automata for these number systems. Since [Fscr ]β defines a tiling of the n-dimensional vector space, we ask, which tiles of this tiling ‘touch’ [Fscr ]β. It turns out that the set of these tiles can be described with help of an automaton, which can be constructed via an easy algorithm which starts with the above-mentioned addition automaton. The addition automaton is also useful in order to determine the box counting dimension of the boundary of [Fscr ]β. Since this boundary is a so-called graph-directed self-affine set, it is not possible to apply the general theory for the calculation of the box counting dimension of self similar sets. Thus we have to use direct methods.

[1]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[2]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[3]  Fractals and Number Systems in Real Quadratic Number Fields , 2001 .

[4]  Christoph Bandt Self-Similar Tilings and Patterns Described by Mappings , 1997 .

[5]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  Kenneth Falconer,et al.  The dimension of self-affine fractals II , 1992, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  K. Falconer Techniques in fractal geometry , 1997 .

[9]  V. Sirvent Identifications and Dimension of the Rauzy Fractal , 1997 .

[10]  Yang WANGAbstract,et al.  GEOMETRY OF SELF � AFFINE TILES , 1998 .

[11]  Richard Kenyon The construction of self-similar tilings , 1995 .

[12]  Christiane Frougny On-line finite automata for addition in some numeration systems , 1999, RAIRO Theor. Informatics Appl..

[13]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[14]  H. Prodinger,et al.  The Sum‐of‐Digits Function for Complex Bases , 1998 .

[15]  Yang Wang,et al.  GEOMETRY OF SELF-AFFINE TILES II , 1999 .

[16]  Y. Peres,et al.  Sixty Years of Bernoulli Convolutions , 2000 .

[17]  Berndt Farwer,et al.  ω-automata , 2002 .

[18]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[19]  Robert F. Tichy,et al.  Fractal properties of number systems , 2001, Period. Math. Hung..

[20]  J. Lagarias Self-Affine Tiles in , 1994 .

[21]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[22]  Steven P. Lalley,et al.  Falconer's formula for the Hausdorff dimension of a self-affine set in R2 , 1995, Ergodic Theory and Dynamical Systems.

[23]  J. J. P. Veerman,et al.  Hausdorff Dimension of Boundaries of Self-Affine Tiles In R N , 1997, math/9701215.

[24]  J. Keesling,et al.  The Hausdorff Dimension of the Boundary of a Self‐Similar Tile , 2000 .

[25]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[26]  Yang Wang,et al.  Hausdorff Dimension of Self‐Similar Sets with Overlaps , 2001 .

[27]  Yuval Peres,et al.  Hausdorff dimensions of sofic affine-invariant sets , 1996 .

[28]  I. Kátai,et al.  Number Systems and Fractal Geometry , 1992 .

[29]  Béla Kovács Canonical number systems in algebraic number fields , 1981 .

[30]  Shigeki Akiyama A self-similar tiling generated by the minimal Pisot number , 1998 .

[31]  Steven P. Lalley,et al.  Hausdorff and box dimensions of certain self-affine fractals , 1992 .

[32]  Steven G. Krantz The Number Systems , 2002 .

[33]  I. Hueter,et al.  Falconer's Formula for the Hausdorr Dimension of a Self{aane Set in R 2 , 1993 .

[34]  Randolph B. Tarrier,et al.  Groups , 1973, Algebra.

[35]  Michael Baake,et al.  Digit tiling of euclidean space , 2000 .

[36]  D. Hardin,et al.  Dimensions associated with recurrent self-similar sets , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  I. Kátai,et al.  Canonical number systems in imaginary quadratic fields , 1981 .

[38]  Kenneth Falconer,et al.  The Hausdorff dimension of self-affine fractals , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.