Robust design with arbitrary distribution using Gauss-type quadrature formula

[1]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[2]  Emilio Rosenblueth,et al.  Two-point estimates in probabilities , 1981 .

[3]  Kyung K. Choi,et al.  Dimension reduction method for reliability-based robust design optimization , 2006 .

[4]  S. Rahman,et al.  A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics , 2004 .

[5]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[6]  G. J. Hahn,et al.  Statistical models in engineering , 1967 .

[7]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[8]  Donald R. Houser,et al.  A ROBUST OPTIMIZATION PROCEDURE WITH VARIATIONS ON DESIGN VARIABLES AND CONSTRAINTS , 1995 .

[9]  Wei Chen,et al.  Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design , 2000 .

[10]  Byeng D. Youn,et al.  Enhanced Dimension-Reduction (eDR) method for sensitivity-free uncertainty quantification , 2006 .

[11]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[12]  Byung Man Kwak,et al.  Response surface augmented moment method for efficient reliability analysis , 2006 .

[13]  Carl D. Sorensen,et al.  A general approach for robust optimal design , 1993 .

[14]  Byung Man Kwak,et al.  Efficient statistical tolerance analysis for general distributions using three-point information , 2002 .

[15]  Genichi Taguchi,et al.  Performance analysis design , 1978 .

[16]  Yan-Gang Zhao,et al.  Moment methods for structural reliability , 2001 .

[17]  S. Rahman,et al.  A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics , 2004 .

[18]  John R. D'Errico,et al.  Statistical tolerancing using a modification of Taguchi's method , 1988 .

[19]  Byung Chai Lee,et al.  Development of a simple and efficient method for robust optimization , 2002 .

[20]  Liping Wang,et al.  Efficient and Accurate Point Estimate Method for Moments and Probability Distribution Estimation , 2004 .

[21]  Kwon-Hee Lee,et al.  Robust optimization considering tolerances of design variables , 2001 .

[22]  H. Hong An efficient point estimate method for probabilistic analysis , 1998 .

[23]  Jeong Sam Han,et al.  Robust optimization using a gradient index: MEMS applications , 2004 .

[24]  David H. Evans An Application of Numerical Integration Techniclues to Statistical Toleraucing , 1967 .

[25]  Singiresu S Rao,et al.  A GENERAL LOSS FUNCTION BASED OPTIMIZATION PROCEDURE FOR ROBUST DESIGN , 1996 .

[26]  Farrokh Mistree,et al.  A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .

[27]  K. S. Li Point-Estimate Method for Calculating Statistical Moments , 1992 .