Robust design with arbitrary distribution using Gauss-type quadrature formula
暂无分享,去创建一个
[1] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[2] Emilio Rosenblueth,et al. Two-point estimates in probabilities , 1981 .
[3] Kyung K. Choi,et al. Dimension reduction method for reliability-based robust design optimization , 2006 .
[4] S. Rahman,et al. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics , 2004 .
[5] H. Engels,et al. Numerical Quadrature and Cubature , 1980 .
[6] G. J. Hahn,et al. Statistical models in engineering , 1967 .
[7] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[8] Donald R. Houser,et al. A ROBUST OPTIMIZATION PROCEDURE WITH VARIATIONS ON DESIGN VARIABLES AND CONSTRAINTS , 1995 .
[9] Wei Chen,et al. Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design , 2000 .
[10] Byeng D. Youn,et al. Enhanced Dimension-Reduction (eDR) method for sensitivity-free uncertainty quantification , 2006 .
[11] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[12] Byung Man Kwak,et al. Response surface augmented moment method for efficient reliability analysis , 2006 .
[13] Carl D. Sorensen,et al. A general approach for robust optimal design , 1993 .
[14] Byung Man Kwak,et al. Efficient statistical tolerance analysis for general distributions using three-point information , 2002 .
[15] Genichi Taguchi,et al. Performance analysis design , 1978 .
[16] Yan-Gang Zhao,et al. Moment methods for structural reliability , 2001 .
[17] S. Rahman,et al. A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics , 2004 .
[18] John R. D'Errico,et al. Statistical tolerancing using a modification of Taguchi's method , 1988 .
[19] Byung Chai Lee,et al. Development of a simple and efficient method for robust optimization , 2002 .
[20] Liping Wang,et al. Efficient and Accurate Point Estimate Method for Moments and Probability Distribution Estimation , 2004 .
[21] Kwon-Hee Lee,et al. Robust optimization considering tolerances of design variables , 2001 .
[22] H. Hong. An efficient point estimate method for probabilistic analysis , 1998 .
[23] Jeong Sam Han,et al. Robust optimization using a gradient index: MEMS applications , 2004 .
[24] David H. Evans. An Application of Numerical Integration Techniclues to Statistical Toleraucing , 1967 .
[25] Singiresu S Rao,et al. A GENERAL LOSS FUNCTION BASED OPTIMIZATION PROCEDURE FOR ROBUST DESIGN , 1996 .
[26] Farrokh Mistree,et al. A procedure for robust design: Minimizing variations caused by noise factors and control factors , 1996 .
[27] K. S. Li. Point-Estimate Method for Calculating Statistical Moments , 1992 .