Recent advances in functional data analysis and high-dimensional statistics
暂无分享,去创建一个
Ricardo Fraiman | Christian Genest | Ricardo Cao | Philippe Vieu | Germen Aneiros | P. Vieu | R. Fraiman | C. Genest | R. Cao | G. Aneiros | Germán Aneiros | Germán Aneiros
[1] Jorge Mateu,et al. Statistics for spatial functional data: some recent contributions , 2009 .
[2] Yingxing Li,et al. Spatial Functional Principal Component Analysis with Applications to Brain Image Data , 2017, J. Multivar. Anal..
[3] Mustapha Rachdi,et al. Uniform in bandwidth consistency for various kernel estimators involving functional data , 2017 .
[4] Denis Bosq,et al. Estimation of Mean and Covariance Operator of Autoregressive Processes in Banach Spaces , 2002 .
[5] Stanislav Nagy,et al. Data depth for measurable noisy random functions , 2019, J. Multivar. Anal..
[6] R. Fraiman,et al. Trimmed means for functional data , 2001 .
[7] Alessandra Menafoglio,et al. Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics , 2017, Eur. J. Oper. Res..
[8] Juan Lucas Bali,et al. Robust estimators under a functional common principal components model , 2017, Computational Statistics & Data Analysis.
[9] Abdelaziz Allam,et al. Optimal rate for covariance operator estimators of functional autoregressive processes with random coefficients , 2019, J. Multivar. Anal..
[10] Ricardo Fraiman,et al. Connecting pairwise geodesic spheres by depth: DCOPS , 2019, J. Multivar. Anal..
[11] Taras Bodnar,et al. Optimal shrinkage estimator for high-dimensional mean vector , 2016, J. Multivar. Anal..
[12] Fabio Nobile,et al. Modeling spatially dependent functional data via regression with differential regularization , 2019, J. Multivar. Anal..
[13] J Steve Marron,et al. Overview of object oriented data analysis , 2014, Biometrical journal. Biometrische Zeitschrift.
[14] John A. D. Aston,et al. Smooth Principal Component Analysis over two-dimensional manifolds with an application to Neuroimaging , 2016, 1601.03670.
[15] Alain Boudou,et al. On spectral and random measures associated to discrete and continuous-time processes , 2002 .
[16] Han Lin Shang,et al. Methods for Scalar‐on‐Function Regression , 2017, International statistical review = Revue internationale de statistique.
[17] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[18] Pedro Delicado,et al. Optimal level sets for bivariate density representation , 2015, J. Multivar. Anal..
[19] Ricardo Fraiman,et al. On depth measures and dual statistics. A methodology for dealing with general data , 2009, J. Multivar. Anal..
[20] Aurore Delaigle,et al. Componentwise classification and clustering of functional data , 2012 .
[21] Zhou Yu,et al. Estimation and testing for partially functional linear errors-in-variables models , 2019, J. Multivar. Anal..
[22] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[23] Karim Benhenni,et al. Local polynomial estimation of regression operators from functional data with correlated errors , 2019, J. Multivar. Anal..
[24] P. Vieu,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[25] Tomasz Górecki,et al. Selected statistical methods of data analysis for multivariate functional data , 2018 .
[26] Han Lin Shang,et al. High-dimensional functional time series forecasting: An application to age-specific mortality rates , 2018, J. Multivar. Anal..
[27] Manuel Febrero-Bande,et al. Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes , 2017, The Annals of Statistics.
[28] K. J. Utikal,et al. Inference for Density Families Using Functional Principal Component Analysis , 2001 .
[29] Henry W. Altland,et al. Applied Functional Data Analysis , 2003, Technometrics.
[30] Jane-Ling Wang,et al. Review of Functional Data Analysis , 2015, 1507.05135.
[31] Pedro Delicado,et al. Functional k-sample problem when data are density functions , 2007, Comput. Stat..
[32] Philippe Vieu,et al. Methodological Richness of Functional Data Analysis , 2011 .
[33] Philippe Vieu,et al. On dimension reduction models for functional data , 2018 .
[34] Heng Lian,et al. Functional partial linear model , 2009, Journal of Nonparametric Statistics.
[35] Hans-Georg Müller,et al. Peter Hall, functional data analysis and random objects , 2016 .
[36] Daniela Rodriguez,et al. Partly linear models on Riemannian manifolds , 2010, 1003.1573.
[37] Jane-Ling Wang,et al. From sparse to dense functional data and beyond , 2016 .
[38] Mustapha Rachdi,et al. Data-driven kNN estimation in nonparametric functional data analysis , 2017, J. Multivar. Anal..
[39] Fabian Scheipl,et al. A general framework for functional regression modelling , 2017 .
[40] Mariela Sued,et al. The spatial sign covariance operator: Asymptotic results and applications , 2018, J. Multivar. Anal..
[41] Julien Jacques,et al. Functional data clustering: a survey , 2013, Advances in Data Analysis and Classification.
[42] Wenceslao González-Manteiga,et al. Statistics for Functional Data , 2007, Comput. Stat. Data Anal..
[43] James O. Ramsay,et al. Functional Data Analysis , 2005 .
[44] S. Ejaz Ahmed,et al. Big and complex data analysis: methodologies and applications , 2017 .
[45] Jorge Mateu,et al. Advances in spatial functional statistics , 2016, Stochastic Environmental Research and Risk Assessment.
[46] José R. Berrendero,et al. An RKHS model for variable selection in functional linear regression , 2019, J. Multivar. Anal..
[47] James O. Ramsay,et al. Spatial spline regression models , 2013 .
[48] Alessia Pini,et al. Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles , 2019, J. Multivar. Anal..
[49] Sara van de Geer,et al. Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .
[50] Pascal Sarda,et al. Functional linear regression with points of impact , 2016, 1601.02798.
[51] Wenceslao González-Manteiga,et al. Functional Principal Component Regression and Functional Partial Least‐squares Regression: An Overview and a Comparative Study , 2017 .
[52] Sylvie Viguier-Pla,et al. Gap between orthogonal projectors - Application to stationary processes , 2016, J. Multivar. Anal..
[53] Mayukh Dass,et al. Introducing Functional Data Analysis to Managerial Science , 2012 .
[54] Alejandro Cholaquidis,et al. Multivariate and functional robust fusion methods for structured Big Data , 2019, J. Multivar. Anal..
[55] Naâmane Laib,et al. Nonparametric kernel regression estimation for functional stationary ergodic data: Asymptotic properties , 2010, J. Multivar. Anal..
[56] Taras Bodnar,et al. Exact and asymptotic tests on a factor model in low and large dimensions with applications , 2014, J. Multivar. Anal..
[57] Alicia Nieto-Reyes,et al. Statistical functional depth , 2017 .
[58] Graciela Boente,et al. Robust estimators in semi-functional partial linear regression models , 2017, J. Multivar. Anal..
[59] Ingrid Van Keilegom,et al. Two-sample tests in functional data analysis starting from discrete data , 2007 .
[60] R. Serfling,et al. General notions of statistical depth function , 2000 .
[61] María Dolores Ruiz-Medina,et al. Strongly consistent autoregressive predictors in abstract Banach spaces , 2018, J. Multivar. Anal..
[62] Lajos Horváth,et al. An introduction to functional data analysis and a principal component approach for testing the equality of mean curves , 2015, Revista Matemática Complutense.
[63] Alessia Pini,et al. The interval testing procedure: A general framework for inference in functional data analysis , 2016, Biometrics.
[64] Philippe Vieu,et al. Error variance estimation in semi-functional partially linear regression models , 2015 .
[65] E. Masry. Nonparametric regression estimation for dependent functional data: asymptotic normality , 2005 .
[66] P. Vieu,et al. Sparse nonparametric model for regression with functional covariate , 2016 .
[67] Mohamed Chaouch. Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors , 2019, J. Multivar. Anal..
[68] Laura M. Sangalli,et al. The role of Statistics in the era of Big Data , 2018 .
[69] Wolfgang Jank,et al. Functional Data Analysis in Electronic Commerce Research , 2006, math/0609173.
[70] Ricardo Fraiman,et al. Feature selection for functional data , 2015, J. Multivar. Anal..
[71] Philippe Vieu,et al. kNN estimation in functional partial linear modeling , 2020 .
[72] Philippe Vieu,et al. Nonparametric modelling for functional data: selected survey and tracks for future , 2018, Statistics.
[73] Sylvie Viguier-Pla,et al. Commuter of operators in a Hilbert space , 2019, J. Multivar. Anal..
[74] Badih Ghattas,et al. Classifying densities using functional regression trees: Applications in oceanology , 2007, Comput. Stat. Data Anal..
[75] Andr'e Mas,et al. Linear Processes for Functional Data , 2009, Oxford Handbooks Online.
[76] Enea G. Bongiorno,et al. Describing the concentration of income populations by functional principal component analysis on Lorenz curves , 2019, J. Multivar. Anal..
[77] Caroline F Finch,et al. Applications of functional data analysis: A systematic review , 2013, BMC Medical Research Methodology.
[78] J. Marron,et al. Object Statistics on Curved Manifolds , 2017 .
[79] Philippe Vieu,et al. Partial linear modelling with multi-functional covariates , 2015, Comput. Stat..
[80] Aldo Goia,et al. An introduction to recent advances in high/infinite dimensional statistics , 2016, J. Multivar. Anal..
[81] Enea G. Bongiorno,et al. An introduction to the 4th edition of the International Workshop on Functional and Operatorial Statistics , 2017 .
[82] Peter Filzmoser,et al. Simplicial principal component analysis for density functions in Bayes spaces , 2016, Comput. Stat. Data Anal..
[83] Jacopo Rossini,et al. Quantifying prediction uncertainty for functional-and-scalar to functional autoregressive models under shape constraints , 2019, J. Multivar. Anal..
[84] Mustapha Rachdi,et al. Consistency of the regression estimator with functional data under long memory conditions , 2008 .
[85] Alan J. Miller. Subset Selection in Regression , 1992 .
[86] Cedric Neumann,et al. Review and application of functional data analysis to chemical data—The example of the comparison, classification, and database search of forensic ink chromatograms , 2015 .
[87] Yufeng Liu,et al. Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data , 2016 .
[88] D. Bosq. Linear Processes in Function Spaces: Theory And Applications , 2000 .
[89] T. Hsing,et al. Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .
[90] Philippe Vieu,et al. Variable selection in infinite-dimensional problems , 2014 .
[91] Piotr Kokoszka,et al. Dependent Functional Data , 2012 .
[92] Lixing Zhu,et al. Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data , 2019, J. Multivar. Anal..
[93] Piotr Kokoszka,et al. Special issue on functional data analysis , 2017 .
[94] Mariano J. Valderrama,et al. An overview to modelling functional data , 2007, Comput. Stat..
[95] Daniel Vogel,et al. The spatial sign covariance matrix with unknown location , 2013, J. Multivar. Anal..
[96] A. Cuevas. A partial overview of the theory of statistics with functional data , 2014 .
[97] Yuao Hu,et al. Nonparametric Estimation of Variance Function for Functional Data Under Mixing Conditions , 2013 .
[98] B. Sen,et al. FRACTALS WITH POINT IMPACT IN FUNCTIONAL LINEAR REGRESSION. , 2010, Annals of statistics.
[99] Philippe Vieu,et al. Semi-functional partial linear regression , 2006 .
[100] Alessia Pini,et al. Interval-wise testing for functional data , 2017 .
[101] Agustín Alvarez,et al. Robust sieve estimators for functional canonical correlation analysis , 2019, J. Multivar. Anal..
[102] Lajos Horváth,et al. TESTING EQUALITY OF MEANS WHEN THE OBSERVATIONS ARE FROM FUNCTIONAL TIME SERIES , 2015 .
[103] Jin-Ting Zhang,et al. Analysis of Variance for Functional Data , 2013 .
[104] Taras Bodnar,et al. Spectral analysis of the Moore-Penrose inverse of a large dimensional sample covariance matrix , 2015, J. Multivar. Anal..
[105] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[106] Gery Geenens,et al. Curse of dimensionality and related issues in nonparametric functional regression , 2011 .
[107] P. Kokoszka,et al. Introduction to Functional Data Analysis , 2017 .
[108] Stanislav Nagy. An overview of consistency results for depth functionals , 2017 .
[109] T. Choi,et al. Gaussian Process Regression Analysis for Functional Data , 2011 .
[110] Nadia L. Kudraszow,et al. Uniform consistency of kNN regressors for functional variables , 2013 .