High temperature stable monodisperse superparamagnetic core-shell iron-oxide@SnO2 nanoparticles

Monodisperse superparamagnetic SnO2-coated iron-oxide nanoparticles (∼16.4 nm) have been synthesized via thermal decomposition. The thickness of SnO2 shells can be controlled from 1–5 nm. As-prepared SnO2-coated iron-oxide nanoparticles with high saturation magnetization (18 A m2/kg), are stable up to 600 °C, which can be formed stable ferrofluid. It was suggested that the SnO2 shell acts as a barrier of preventing the growth of γ-Fe2O3 and consequently, avoiding the γ-Fe2O3-to-α-Fe2O3 phase transition at high temperatures.

[1]  V. Palkar,et al.  Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3 , 1988 .

[2]  F. Yen,et al.  Crystallite Size Variations of Nanosized Fe2O3Powders during γ- to α-Phase Transformation , 2002 .

[3]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[4]  A. Giglia,et al.  Size-dependent oxidation in iron/iron oxide core-shell nanoparticles , 2003 .

[5]  G. Stucky,et al.  Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media , 2003 .

[6]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[7]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[8]  Valérie Cabuil,et al.  Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. , 2005, Journal of the American Chemical Society.

[9]  Xiaogang Peng,et al.  Super‐Stable, High‐Quality Fe3O4 Dendron–Nanocrystals Dispersible in Both Organic and Aqueous Solutions , 2005, Advanced materials.

[10]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[11]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[12]  K. Yano,et al.  Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres , 2006 .

[13]  Zhichuan J. Xu,et al.  Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. , 2007, Journal of the American Chemical Society.

[14]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[15]  Yuan Hu,et al.  A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites , 2007, Nanotechnology.

[16]  A. Roig,et al.  Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. , 2007, Faraday discussions.

[17]  Lifeng Cui,et al.  Novel Nanocrystal Heterostructures: Crystallographic-Oriented Growth of SnO2 Nanorods onto α-Fe2O3 Nanohexahedron , 2008 .

[18]  T. Sundius,et al.  Rearrangement and decomposition of (CH3)3M+ (M = Si, Ge, Sn) ions: A DFT study , 2008 .

[19]  Chenjie Xu,et al.  Porous hollow Fe(3)O(4) nanoparticles for targeted delivery and controlled release of cisplatin. , 2009, Journal of the American Chemical Society.