Catalytic performance of Ni supported on ZnO‐Al 2 O 3 composites with different Zn content in methane dry reforming

[1]  F. J. Gutiérrez Ortiz,et al.  Hydrogen production from supercritical water reforming of acetic acid, acetol, 1-butanol and glucose over Ni-based catalyst , 2018, The Journal of Supercritical Fluids.

[2]  S. Alavi,et al.  Modeling and optimization of methane dry reforming over Ni–Cu/Al2O3 catalyst using Box–Behnken design , 2017, Journal of Energy Chemistry.

[3]  Iljeong Heo,et al.  Effect of Zn promoter on catalytic activity and stability of Co/ZrO 2 catalyst for dry reforming of CH 4 , 2018 .

[4]  S. Alavi,et al.  CO2 reforming of methane over Ni/ZnAl2O4 catalysts: Influence of Ce addition on activity and stability , 2017 .

[5]  J. Radnik,et al.  Low-temperature CO2 reforming of methane over Ni supported on ZnAl mixed metal oxides , 2017 .

[6]  G. Deo,et al.  Reforming and cracking of CH4 over Al2O3 supported Ni, Ni-Fe and Ni-Co catalysts , 2017 .

[7]  Lei Chen,et al.  Effect of Zn/Al ratio of Ni/ZnO-Al2O3 catalysts on the catalytic deoxygenation of oleic acid into alkane , 2017 .

[8]  J. M. F. Barros,et al.  Ni supported on Fe-doped MgAl2O4 for dry reforming of methane: Use of factorial design to optimize H2 yield , 2016 .

[9]  Z. Iqbal,et al.  Promoting Effect of CeO2 and MgO for CO2 Reforming of Methane over Ni‐ZnO Catalyst , 2016 .

[10]  R. Rabelo-Neto,et al.  Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol , 2016 .

[11]  Fereshteh Meshkani,et al.  Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber , 2016 .

[12]  Mohammad Haghighi,et al.  Syngas production via dry reforming of CH4 over Co- and Cu-promoted Ni/Al2O3–ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods , 2014 .

[13]  Fereshteh Meshkani,et al.  Effect of Ni loadings on the activity and coke formation of MgO-modified Ni/Al2O3 nanocatalyst in dry reforming of methane , 2014 .

[14]  S. Sokolov,et al.  Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation , 2014 .

[15]  A. Monzón,et al.  Steam-methane reforming at low temperature on nickel-based catalysts , 2014 .

[16]  Baitao Li,et al.  Methane reforming with CO2 using nickel catalysts supported on yttria-doped SBA-15 mesoporous materials via sol–gel process , 2013 .

[17]  J. González-Velasco,et al.  Structural characterisation of Ni/alumina reforming catalysts activated at high temperatures , 2013 .

[18]  S. K. Saraswat,et al.  Synthesis of hydrogen and carbon nanotubes over copper promoted Ni/SiO2 catalyst by thermocatalytic decomposition of methane , 2013 .

[19]  P. Estifaee,et al.  CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma. , 2013, Journal of nanoscience and nanotechnology.

[20]  Z. Alothman A Review: Fundamental Aspects of Silicate Mesoporous Materials , 2012, Materials.

[21]  Mei Yang,et al.  SMSI-like behavior and Ni promotion effect on NiZnAl catalysts in steam reforming of methanol , 2012 .

[22]  F. Bamoharram,et al.  Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology , 2012 .

[23]  Julian R.H. Ross,et al.  The effect of potassium on the activity and stability of Ni–MgO–ZrO2 catalysts for the dry reforming of methane to give synthesis gas , 2011 .

[24]  Manuel Gómez,et al.  Ethanol steam reforming over Ni/ZnAl2O4-CeO2. Influence of calcination atmosphere and nature of catalytic precursor , 2011 .

[25]  A. Al-Fatesh,et al.  Effects of Selected Promoters on Ni/Y-Al2O3 Catalyst Performance in Methane Dry Reforming , 2011 .

[26]  Jie He,et al.  Review of syngas production via biomass DFBGs , 2011 .

[27]  S. Bhatia,et al.  Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni–Co/MgO–ZrO2: Preparation, characterization and activity studies , 2010 .

[28]  Manuel Gómez,et al.  Ni catalysts supported on modified ZnAl2O4 for ethanol steam reforming , 2010 .

[29]  F. Mondragón,et al.  High stability of Ce-promoted Ni/Mg―Al catalysts derived from hydrotalcites in dry reforming of methane , 2010 .

[30]  M. Illán-Gómez,et al.  Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane , 2009 .

[31]  Manuel Gómez,et al.  Hydrogen production by ethanol reforming over NiZnAl catalysts: Influence of Ce addition on carbon deposition , 2008 .

[32]  A. Dalai,et al.  Development of stable bimetallic catalysts for carbon dioxide reforming of methane , 2007 .

[33]  J. Llorca,et al.  Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts: The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts , 2006 .

[34]  A. Kiennemann,et al.  Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane , 2006 .

[35]  Xiaoming Zheng,et al.  Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts , 2006 .

[36]  He Fei,et al.  Studies on nickel-based catalysts for carbon dioxide reforming of methane , 2005 .

[37]  V. Dubois,et al.  Activation of supported nickel catalysts for carbon dioxide reforming of methane , 2004 .

[38]  J. Rostrup-Nielsen New aspects of syngas production and use , 2000 .

[39]  Shaobin Wang,et al.  Effects of promoters on catalytic activity and carbon deposition of Ni/γ‐Al2O3 catalysts in CO2 reforming of CH4 , 2000 .

[40]  Shaobin Wang,et al.  Reforming of methane with carbon dioxide over Ni/Al2O3 catalysts : Effect of nickel precursor , 1998 .

[41]  Yu‐Wen Chen,et al.  Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation method , 1995 .

[42]  D. Kohl,et al.  Low temperature sublimation processes from clean cleaved polar surfaces of zinc oxide crystals during first heating , 1974 .