Yb,Er,Tm:Sc2O3 Single Crystal Fibers for Multi-mode Optical Thermometry

[1]  Weixin Zhou,et al.  Red light intensity modulation, temperature sensing and bioimaging of NaLuF4:Er3+/Tm3+/Yb3+ microcrystals under 1532 nm laser excitation , 2024, Journal of Alloys and Compounds.

[2]  N. Shrivastava,et al.  Aspects of luminescence nanoprobes for thermometry: Progress and outlook , 2023, Applied Materials Today.

[3]  Linhua Ye,et al.  Effects of Er3+ and Yb3+ concentrations on upconversion luminescence and thermal sensing characteristics of Sc2O3:Er3+/Yb3+ phosphors , 2023, Ceramics International.

[4]  Junxiang Zhang,et al.  Impacts of Ce3+ doping on temperature sensing characteristics of LuAG: Yb3+/Ho3+ up-conversion fluorescent materials , 2023, Journal of Alloys and Compounds.

[5]  Jian Wang,et al.  Effects of Yb3+ Concentration on Up-Conversion Luminescence and Temperature Sensing Characteristics of Tm3+/Yb3+:Y2o3 Phosphor , 2022, SSRN Electronic Journal.

[6]  X. Tao,et al.  Exploring promising up-conversion luminescence single crystal fiber in sesquioxide family for high temperature optical thermometry application , 2022 .

[7]  L. Luo,et al.  Dual-center thermochromic Bi2MoO6:Yb3+, Er3+, Tm3+ phosphors for ultrasensitive luminescence thermometry , 2022, Journal of Alloys and Compounds.

[8]  A. Benayas,et al.  Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescence‐Lifetime‐Based Nanothermometry , 2021, Advanced materials.

[9]  Hai Guo,et al.  Dual-mode optical thermometry based on transparent NaY2F7:Er3+,Yb3+ glass-ceramics , 2021, Ceramics International.

[10]  Shujun Zhang,et al.  Fluorescence intensity ratio (FIR) analysis of the temperature sensing properties in transparent ferroelectric PMN-PT:Pr3+ ceramic , 2021 .

[11]  Kailin Wang,et al.  Efficient upconversion emission and high-sensitivity thermometry of BaIn2O4:Yb3+/Tm3+/RE3+ (RE = Er3+, Ho3+) phosphor. , 2021, Dalton transactions.

[12]  Hai Guo,et al.  Y4GeO8:Er3+,Yb3+ up-conversion phosphors for optical temperature sensor based on FIR technique , 2021, Journal of Rare Earths.

[13]  Z. Jia,et al.  Optimized growth of high length-to-diameter ratio Lu2O3 single crystal fibers by the LHPG method , 2021 .

[14]  Youfusheng Wu,et al.  Crucial processes for upconversion white emission and ultrahigh sensitivity in Er3+/Tm3+/Yb3+ tri-doped double perovskite Gd2ZnTiO6 phosphors , 2020 .

[15]  Hai Guo,et al.  A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6:Er3+,Yb3+ phosphors , 2020, Chemical Engineering Journal.

[16]  X. Tao,et al.  Antioxidation and High-Resolution Ultrasonic Temperature Sensor Based on Cr3+:MgAl2O4 Single Crystal Fiber , 2020 .

[17]  V. Lavín,et al.  Luminescent Nanothermometer Operating at Very High Temperature—Sensing up to 1000 K with Upconverting Nanoparticles (Yb3+/Tm3+) , 2020, ACS applied materials & interfaces.

[18]  B. Jiang,et al.  A study on temperature sensing performance based on the luminescence of Eu3+ and Er3+ co-doped YNbO4. , 2020, Dalton transactions.

[19]  X. Yao,et al.  Winning wide-temperature-range and high-sensitive thermometry by a multichannel strategy of dual-lanthanides in the new tungstate phosphors , 2020 .

[20]  Zhongliang Xiao,et al.  A universal strategy to enhance the absolute sensitivity for temperature detection in bright Er3+/Yb3+ doped double perovskite Gd2ZnTiO6 phosphors , 2020 .

[21]  X. Yao,et al.  Optical temperature sensing of up-conversion luminescent materials: Fundamentals and progress , 2020 .

[22]  X. Tao,et al.  Cracking mechanism and spectral properties of Er,Yb:CaGdAlO4 crystals grown by the LHPG method , 2020 .

[23]  Federico A. Rabuffetti,et al.  Bandshift Luminescence Thermometry Using Mn4+:Na4Mg(WO4)3 Phosphors , 2019 .

[24]  Xueru Zhang,et al.  Up-conversion luminescence of Yb3+/Er3+ doped Gd2O3 phosphors for optical temperature sensing in green and red regions , 2019 .

[25]  N. Zhang,et al.  Single Crystal Fibers: Diversified Functional Crystal Material , 2019, Advanced Fiber Materials.

[26]  Ni An,et al.  Up-conversion luminescence characteristics and temperature sensing of Y2O3: Ho3+/Yb3+ single crystal fiber , 2019, Journal of Luminescence.

[27]  B. Liu,et al.  Intense near-infrared emission, upconversion processes and temperature sensing properties of Tm3+ and Yb3+ co-doped double perovskite Gd2ZnTiO6 phosphors , 2019, Journal of Alloys and Compounds.

[28]  X. Tao,et al.  The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method and the effects of their discoloration , 2019, RSC Advances.

[29]  Lixin Peng,et al.  Size dependent optical temperature sensing properties of Y2O3: Tb3+, Eu3+ nanophosphors , 2019, RSC advances.

[30]  Shilong Zhao,et al.  Effects of Tm3+ concentration on upconversion luminescence and temperature-sensing behavior in Tm3+/Yb3+:Y2O3 nanocrystals. , 2018, Luminescence : the journal of biological and chemical luminescence.

[31]  Z. Ji,et al.  A review on nanostructured glass ceramics for promising application in optical thermometry , 2018, Journal of Alloys and Compounds.

[32]  Shilong Zhao,et al.  Temperature-dependent emission color and temperature sensing behavior in Tm3+/Yb3+:Y2O3 nanoparticles , 2018 .

[33]  N. Inada,et al.  Intracellular temperature measurements with fluorescent polymeric thermometers. , 2017, Chemical communications.

[34]  K. Horchani-Naifer,et al.  La2O3: Tm, Yb, Er upconverting nano-oxides for sub-tissue lifetime thermal sensing , 2016 .

[35]  Yuanyuan Tian,et al.  Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route , 2016 .

[36]  L. Dubrovinsky,et al.  Structural and vibrational properties of single crystals of Scandia, Sc2O3 under high pressure , 2015 .

[37]  Xiaohong Yan,et al.  Optical temperature sensing of rare-earth ion doped phosphors , 2015 .

[38]  Jun Lin,et al.  Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. , 2015, Chemical Society reviews.

[39]  Yuhai Zhang,et al.  Probing the nature of upconversion nanocrystals: instrumentation matters. , 2015, Chemical Society reviews.

[40]  C. Duan,et al.  Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals , 2014 .

[41]  Wei Xu,et al.  Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal. , 2014, Optics letters.

[42]  K. Lebbou,et al.  Microstructure of the yttria doped Al2O3–ZrO2 eutectic fibers grown by the laser heated pedestal growth (LHPG) method , 2013 .

[43]  Kezhi Zheng,et al.  Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+–Tm3+–Gd3+ codoped NaLuF4 microcrystals , 2013 .

[44]  Fu-ping Wang,et al.  Red, green, blue and bright white upconversion luminescence of CaTiO3: Er3+/Tm3+/Yb3+ nanocrystals , 2012 .

[45]  Baosheng Cao,et al.  Optical temperature sensing behavior of enhanced green upconversion emissions from Er–Mo:Yb2Ti2O7 nanophosphor , 2011 .

[46]  U. Rodríguez-Mendoza,et al.  Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass , 2011 .

[47]  Hailong Qiu,et al.  Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals , 2011 .

[48]  Jun Lin,et al.  Controllable red, green, blue (RGB) and bright white upconversion luminescence of Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals through single laser excitation at 980 nm. , 2009, Chemistry.

[49]  B. Dong,et al.  Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3 , 2007 .

[50]  Yang Wei,et al.  Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4:Yb,Er Nanoplates , 2006 .

[51]  Glauco S. Maciel,et al.  Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor , 2004 .

[52]  Brahim Lounis,et al.  Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. , 2003, Physical review letters.

[53]  Baojiu Chen,et al.  Optical temperature sensor based on upconversion luminescence of Er 3+ doped GdTaO 4 phosphors , 2020 .

[54]  Helmut Schäfer,et al.  Upconverting nanoparticles. , 2011, Angewandte Chemie.