On distance constrained labeling of disk graphs

A disk graph is the intersection graph of a set of disks in the plane. For a k-tuple (p1 ..... pk) of positive integers, a distance constrained labeling of a graph G is an assignment of labels to the vertices of G such that the labels of any pair of vertices at graph distance i in G differ by at least Pi, for i = 1,...,k. In the case when k = 1 and p1 = 1, this gives a traditional coloring of G. We propose and analyze several online and offiine labeling algorithms for the class of disk graphs.

[1]  Jeremy P. Spinrad,et al.  Robust algorithms for restricted domains , 2001, SODA '01.

[2]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[3]  Jan van den Heuvel,et al.  Graph labeling and radio channel assignment , 1998, J. Graph Theory.

[4]  András Gyárfás,et al.  On-line and first fit colorings of graphs , 1988, J. Graph Theory.

[5]  John P. Georges,et al.  On the size of graphs labeled with a condition at distance two , 1996, J. Graph Theory.

[6]  Stephen Hurley,et al.  Methods and algorithms for radio channel assignment , 2002 .

[7]  Thomas Erlebach,et al.  On-line coloring of geometric intersection graphs , 2002, Comput. Geom..

[8]  M.J.P. Peeters,et al.  On coloring j-unit sphere graphs , 1991 .

[9]  J. Georges,et al.  On the size of graphs labeled with condition at distance two , 1996 .

[10]  Panos M. Pardalos,et al.  Handbook of combinatorial optimization. Supplement , 2005 .

[11]  Arie M. C. A. Koster,et al.  Frequency assignment : models and algorithms , 1999 .

[12]  Jan Kratochvíl,et al.  Representing graphs by disks and balls (a survey of recognition-complexity results) , 2001, Discret. Math..

[13]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[14]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[15]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[16]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[17]  Jan Kratochvíl,et al.  Fixed-parameter complexity of lambda-labelings , 2001, Discret. Appl. Math..

[18]  Jirí Fiala,et al.  Partial covers of graphs , 2002, Discuss. Math. Graph Theory.

[19]  Panos M. Pardalos,et al.  Frequency Assignment Problems , 1999, Handbook of Combinatorial Optimization.

[20]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[21]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[22]  J. van den Heuvel Radio Channel Assignment on 2-Dimensional Lattices , 2002 .

[23]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[24]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[25]  Peter Brucker,et al.  Polynomial algorithms for resource-constrained and multiprocessor task scheduling problems , 1996 .

[26]  Jan van Leeuwen,et al.  lambda-Coloring of Graphs , 2000, STACS.

[27]  Ewa Malesinska Graph-Theoretical Models for Frequency Assignment Problems , 1997 .

[28]  S. Thomas McCormick,et al.  Optimal approximation of sparse hessians and its equivalence to a graph coloring problem , 1983, Math. Program..

[29]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.