Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems

Some geometric solutions to the problem of endowing a dynamical system with a Hamiltonian formulation are presented within the class of Poisson structures. We address this problem on orientable manifolds, and by using decomposable Poisson structures. In the first case, the existence of a Hamiltonian formulation is ensured under the vanishing of some topological obstructions, improving a result of Gao. In the second case, we apply a variant of the Hojman construction to solve the problem for vector fields admitting a transversally invariant metric and, in particular, infinitesimal generators of proper actions. Finally, we also consider the hamiltonization problem for Lie group actions, and give solutions in the particular case in which the acting Lie group is a low-dimensional torus.

[1]  V. Perlick The Hamiltonization problem from a global viewpoint , 1992 .

[2]  Hamiltonian structures for smooth vector fields , 1987 .

[3]  Linear systems with a quadratic integral , 1992 .

[4]  Yavuz Nutku,et al.  Poisson structure of dynamical systems with three degrees of freedom , 1993 .

[5]  A. Weinstein The modular automorphism group of a Poisson manifold , 1997 .

[6]  Izu Vaisman,et al.  Lectures on the geometry of Poisson manifolds , 1994 .

[7]  S. Hojman The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system , 1996 .

[8]  Poisson Brackets with Prescribed Casimirs , 2011, Canadian Journal of Mathematics.

[9]  S. Hojman Quantum algebras in classical mechanics , 1991 .

[10]  A. Blasco,et al.  Hamiltonian structure of compartmental epidemiological models , 2020, Physica D: Nonlinear Phenomena.

[11]  A constant of motion in 3D implies a local generalized Hamiltonian structure , 1997, 1910.03888.

[12]  G. Hector,et al.  Intégration Symplectique des Variétés de Poisson Totalement Asphériques , 1991 .

[13]  J. Dufour,et al.  Poisson Structures and Their Normal Forms , 2005 .

[14]  R. Fernandes,et al.  Riemannian metrics on Lie groupoids , 2014, 1404.5989.

[15]  Puyun Gao,et al.  Hamiltonian structure and first integrals for the Lotka–Volterra systems , 2000 .

[16]  M. Boucetta Géometrie Globale des Systèmes Hamiltoniens Complètement Intégrables et Variables Action-Angle avec Singularités , 1991 .

[17]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[18]  M. Hirsch On imbedding di erentiable manifolds in euclidean space , 1961 .

[19]  M. Pflaum,et al.  Geometry of orbit spaces of proper Lie groupoids , 2010, 1101.0180.

[20]  M. Feix,et al.  Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .