Geometrical Aspects of the Hamiltonization Problem of Dynamical Systems
暂无分享,去创建一个
Misael Avendano-Camacho | Claudio C. Garc'ia-Mendoza | Jos'e C. Ru'iz-Pantale'on | Eduardo Velasco-Barreras Departamento de Matem'aticas | Universidad de Sonora | M'exico | Instituto de Matem'aticas | Universidad Nacional Aut'onoma de M'exico | Instituto de Matem'atica e Estat'istica | Universidade Federal Fluminense
[1] V. Perlick. The Hamiltonization problem from a global viewpoint , 1992 .
[2] Hamiltonian structures for smooth vector fields , 1987 .
[3] Linear systems with a quadratic integral , 1992 .
[4] Yavuz Nutku,et al. Poisson structure of dynamical systems with three degrees of freedom , 1993 .
[5] A. Weinstein. The modular automorphism group of a Poisson manifold , 1997 .
[6] Izu Vaisman,et al. Lectures on the geometry of Poisson manifolds , 1994 .
[7] S. Hojman. The construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system , 1996 .
[8] Poisson Brackets with Prescribed Casimirs , 2011, Canadian Journal of Mathematics.
[9] S. Hojman. Quantum algebras in classical mechanics , 1991 .
[10] A. Blasco,et al. Hamiltonian structure of compartmental epidemiological models , 2020, Physica D: Nonlinear Phenomena.
[11] A constant of motion in 3D implies a local generalized Hamiltonian structure , 1997, 1910.03888.
[12] G. Hector,et al. Intégration Symplectique des Variétés de Poisson Totalement Asphériques , 1991 .
[13] J. Dufour,et al. Poisson Structures and Their Normal Forms , 2005 .
[14] R. Fernandes,et al. Riemannian metrics on Lie groupoids , 2014, 1404.5989.
[15] Puyun Gao,et al. Hamiltonian structure and first integrals for the Lotka–Volterra systems , 2000 .
[16] M. Boucetta. Géometrie Globale des Systèmes Hamiltoniens Complètement Intégrables et Variables Action-Angle avec Singularités , 1991 .
[17] A. Lichnerowicz,et al. Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .
[18] M. Hirsch. On imbedding di erentiable manifolds in euclidean space , 1961 .
[19] M. Pflaum,et al. Geometry of orbit spaces of proper Lie groupoids , 2010, 1101.0180.
[20] M. Feix,et al. Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .