The role of high-resolution structural studies in the development of commercial enzymes.

Recent developments in both NMR and X-ray crystallography allow the analysis of commercial enzymes in unprecedented detail. The novel methods provide detailed insights into protein dynamics, establish the existence of special catalytic hydrogen bonds and define the ionization states at the enzyme active site. A more detailed understanding of how the changes in structure are related to altered function should facilitate the design of future commercial enzymes with improved performance for different environmental conditions.

[1]  R. Raines,et al.  Microscopic pKa values of Escherichia coli thioredoxin. , 1997, Biochemistry.

[2]  P. Frey,et al.  Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Kay,et al.  Solution NMR spectroscopy beyond 25 kDa. , 1997, Current opinion in structural biology.

[4]  K Wüthrich,et al.  TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Robert F. Boyko,et al.  CAMRA: Chemical shift based computer aided protein NMR assignments , 1998, Journal of biomolecular NMR.

[6]  R. Kaptein,et al.  Microsecond time scale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements , 1999, Journal of biomolecular NMR.

[7]  H. Erickson,et al.  Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain , 1998, Nature Structural Biology.

[8]  Werner Braun,et al.  Automated combined assignment of NOESY spectra and three-dimensional protein structure determination , 1997, Journal of biomolecular NMR.

[9]  L. Kay,et al.  A MULTIDIMENSIONAL NMR EXPERIMENT FOR MEASUREMENT OF THE PROTEIN DIHEDRAL ANGLE PSI BASED ON CROSS-CORRELATED RELAXATION BETWEEN 1HALPHA -13CALPHA D IPOLAR AND 13C' (CARBONYL) CHEMICAL SHIFT ANISOTROPY MECHANISMS , 1997 .

[10]  F. Löhr,et al.  Application of H(N)CA,CO-E.COSY experiments for calibrating the φ angular dependences of vicinal couplings J(C′i−1,Hiα), J(C′i−1,Ciβ) and J(C′i−1,C′i) in proteins , 1997 .

[11]  C. Dobson,et al.  Real-Time NMR Studies of Protein Folding , 1998 .

[12]  H. Rüterjans,et al.  Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study. , 1997, Journal of molecular biology.

[13]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  L. Kay,et al.  Pulse schemes for the measurement of3 JC′Cγ and3 JNCγ scalar couplings in 15N,13C uniformly labeled proteins , 1997 .

[15]  M. Hennig,et al.  Direct measurement of angles between bond vectors in high-resolution NMR. , 1997, Science.

[16]  A. Gronenborn,et al.  Three‐dimensional solution structure of the 44 kDa ectodomain of SIV gp41 , 1998, The EMBO journal.

[17]  Mitsuo Iwadate,et al.  Cα and Cβ Carbon-13 Chemical Shifts in Proteins From an Empirical Database , 1999 .

[18]  D. Cowburn,et al.  The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY , 1999, Journal of biomolecular NMR.

[19]  S. Grzesiek,et al.  Two-Dimensional NMR Methods for Determining χ1 Angles of Aromatic Residues in Proteins from Three-Bond JC‘Cγ and JNCγ Couplings , 1997 .

[20]  Elizabeth D. Getzoff,et al.  Structure at 0.85 Å resolution of an early protein photocycle intermediate , 1998, Nature.

[21]  Ad Bax,et al.  Four-Dimensional 15N-Separated NOESY of Slowly Tumbling Perdeuterated 15N-Enriched Proteins. Application to HIV-1 Nef , 1995 .

[22]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[23]  K. Mayo,et al.  A simple approach to analyzing protein side-chain dynamics from 13C NMR relaxation data. , 1998, Journal of magnetic resonance.

[24]  Robert F. Boyko,et al.  Automated 1H and 13C chemical shift prediction using the BioMagResBank , 1997, Journal of biomolecular NMR.

[25]  P. Kuhn,et al.  The 0.78 A structure of a serine protease: Bacillus lentus subtilisin. , 1998, Biochemistry.

[26]  J. Prestegard,et al.  New techniques in structural NMR — anisotropic interactions , 1998, Nature Structural Biology.

[27]  E. Zuiderweg,et al.  Use of13C-13C NOE for the assignment of NMR lines of larger labeled proteins at larger magnetic fields , 1996 .

[28]  D Cowburn,et al.  Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Ad Bax,et al.  An Empirical Correlation between Amide Deuterium Isotope Effects on 13Cα Chemical Shifts and Protein Backbone Conformation , 1997 .

[30]  D. Case The use of chemical shifts and their anisotropies in biomolecular structure determination. , 1998, Current opinion in structural biology.

[31]  Ad Bax,et al.  Methodological advances in protein NMR , 1993 .

[32]  Ad Bax,et al.  Measurement of Three-Bond 13C−13C J Couplings between Carbonyl and Carbonyl/Carboxyl Carbons in Isotopically Enriched Proteins , 1996 .

[33]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[34]  L. Kay,et al.  The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. , 1998, Annual review of biophysics and biomolecular structure.

[35]  A Aubry,et al.  Transferability of multipole charge-density parameters: application to very high resolution oligopeptide and protein structures. , 1998, Acta crystallographica. Section D, Biological crystallography.

[36]  S. Grzesiek,et al.  Direct Observation of Hydrogen Bonds in Nucleic Acid Base Pairs by Internucleotide 2JNN Couplings , 1998 .

[37]  K. Constantine,et al.  Characterization of NADP+ binding to perdeuterated MurB: backbone atom NMR assignments and chemical-shift changes. , 1997, Journal of molecular biology.

[38]  K. H. Kalk,et al.  Crystal structure of the high-alkaline serine protease PB92 from Bacillus alcalophilus. , 1992, Protein engineering.

[39]  Toshio Yamazaki,et al.  Segmental Isotope Labeling for Protein NMR Using Peptide Splicing , 1998 .

[40]  C. Dobson,et al.  Structural determinants of protein dynamics: analysis of 15N NMR relaxation measurements for main-chain and side-chain nuclei of hen egg white lysozyme. , 1995, Biochemistry.

[41]  A. Bax,et al.  Identification of the Hydrogen Bonding Network in a Protein by Scalar Couplings , 1999 .

[42]  D. Bashford,et al.  Calculations of electrostatic interactions and pKas in the active site of Escherichia coli thioredoxin. , 1998, Biochemistry.

[43]  M. Knapp,et al.  Engineered Bacillus lentus subtilisins having altered flexibility. , 1999, Journal of molecular biology.

[44]  R. Boelens,et al.  The solution structure of serine protease PB92 from Bacillus alcalophilus presents a rigid fold with a flexible substrate-binding site. , 1997, Structure.

[45]  D. S. Garrett,et al.  Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr , 1999, Nature Structural Biology.

[46]  P. Pelupessy,et al.  Efficient determination of angles subtended by Cα-Hα and N-HN vectors in proteins via dipole-dipole cross-correlation§ , 1999, Journal of biomolecular NMR.

[47]  S. Grzesiek,et al.  Direct Observation of Hydrogen Bonds in Proteins by Interresidue 3hJNC' Scalar Couplings , 1999 .

[48]  J. Gavilanes,et al.  Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function. , 1998, Biochemistry.

[49]  T. Harris,et al.  High‐Precision Measurement of Hydrogen Bond Lengths in Proteins by Nuclear Magnetic Resonance Methods , 1999, Proteins.

[50]  I. Felli,et al.  Identification of Slow Motions in the Reduced Recombinant High-potential Iron Sulfur Protein I (HiPIP I) from Ectothiorhodospira Halophila via 15N Rotating-frame NMR Relaxation Measurements , 1998, Journal of biomolecular NMR.

[51]  L. Kay,et al.  A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins , 1999, Journal of biomolecular NMR.

[52]  A. Palmer,et al.  Probing molecular motion by NMR. , 1997, Current opinion in structural biology.

[53]  R. Boelens,et al.  Gradient-purged isotope filter experiments for the detection of bound water in proteins , 1999 .

[54]  J. Kraut,et al.  Subtilisin; a stereochemical mechanism involving transition-state stabilization. , 1972, Biochemistry.

[55]  Lewis E. Kay,et al.  Protein dynamics from NMR , 1998, Nature Structural Biology.

[56]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[57]  Gottfried Otting,et al.  NMR studies of water bound to biological molecules , 1997 .

[58]  Bennett T. Farmer,et al.  Use of 1HN-1HN NOEs to Determine Protein Global Folds in Perdeuterated Proteins , 1995 .

[59]  H. Rüterjans,et al.  Dynamics of β-CH and β-CH2 Groups of Amino Acid Side Chains in Proteins , 1998, Journal of biomolecular NMR.

[60]  S. Teichmann,et al.  An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types , 1996, Journal of biomolecular NMR.

[61]  P. Frey,et al.  A low-barrier hydrogen bond in the catalytic triad of serine proteases. , 1994, Science.

[62]  P. Domaille,et al.  An Approach to the Structure Determination of Larger Proteins Using Triple Resonance NMR Experiments in Conjunction with Random Fractional Deuteration , 1996 .

[63]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[64]  T Pawson,et al.  Selective methyl group protonation of perdeuterated proteins. , 1996, Journal of molecular biology.

[65]  Kurt Wüthrich,et al.  The second decade — into the third millenium , 1998, Nature Structural Biology.

[66]  Andrew L. Lee,et al.  Improved labeling strategy for 13C relaxation measurements of methyl groups in proteins , 1997, Journal of biomolecular NMR.

[67]  B. Halle,et al.  Water molecules in the binding cavity of intestinal fatty acid binding protein: dynamic characterization by water 17O and 2H magnetic relaxation dispersion. , 1999, Journal of molecular biology.

[68]  Ad Bax,et al.  Solution NMR Measurement of Amide Proton Chemical Shift Anisotropy in 15N-Enriched Proteins. Correlation with Hydrogen Bond Length§ , 1997 .

[69]  M Nilges,et al.  Ambiguous distance data in the calculation of NMR structures. , 1997, Folding & design.

[70]  Z. Dauter,et al.  The benefits of atomic resolution. , 1997, Current opinion in structural biology.

[71]  L. Kay,et al.  Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. , 1997, Biochemistry.

[72]  Gregory L. Warren,et al.  NMR structure calculation methods for large proteins Application of torsion angle dynamics and distance geometry/simulated annealing to the 269-residue protein serine protease PB92 , 1998 .

[73]  A. Bax,et al.  Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. , 1997, Science.

[74]  D. Wishart,et al.  The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data , 1994, Journal of biomolecular NMR.

[75]  A T Brünger,et al.  Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. , 1997, Journal of magnetic resonance.

[76]  R. Kaptein,et al.  QUANTITATIVE MEASUREMENT OF RELAXATION INTERFERENCE EFFECTS BETWEEN 1HN CSA AND 1H-15N DIPOLAR INTERACTION: CORRELATION WITH SECONDARY STRUCTURE , 1997 .

[77]  M. Southworth,et al.  Control of protein splicing by intein fragment reassembly , 1998, The EMBO journal.

[78]  P. Schmieder,et al.  Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: Potential for NMR structure determination of large proteins , 1999, Journal of biomolecular NMR.

[79]  C H Arrowsmith,et al.  Subunit-specific backbone NMR assignments of a 64 kDa trp repressor/DNA complex: A role for N-terminal residues in tandem binding , 1998, Journal of biomolecular NMR.

[80]  W. Braun,et al.  Automated 2D NOESY assignment and structure calculation of Crambin(S22/I25) with the self-correcting distance geometry based NOAH/DIAMOD programs. , 1999, Journal of magnetic resonance.

[81]  S J Remington,et al.  Refined atomic model of wheat serine carboxypeptidase II at 2.2-A resolution. , 1992, Biochemistry.

[82]  Bengt-Harald Jonsson,et al.  Hydration of denatured and molten globule proteins , 1999, Nature Structural Biology.

[83]  A. Pardi,et al.  Hydrogen bond length and proton NMR chemical shifts in proteins , 1983 .

[84]  K. Wüthrich,et al.  NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  L. Kay,et al.  Assignment of 15N, 13Cα, 13Cβ, and HN Resonances in an 15N,13C,2H Labeled 64 kDa Trp Repressor−Operator Complex Using Triple-Resonance NMR Spectroscopy and 2H-Decoupling , 1996 .

[86]  M. Wittekind,et al.  Incorporation of 1H/13C/15N-{Ile, Leu, Val} into a Perdeuterated, 15N-Labeled Protein: Potential in Structure Determination of Large Proteins by NMR , 1996 .

[87]  D. Torchia,et al.  Secondary structure of β-hydroxydecanoyl thiol ester dehydrase, a 39-kDa protein, derived from Hα, Cα, Cβ and CO signal assignments and the Chemical Shift Index: Comparison with the crystal structure , 1996 .

[88]  C. Cambillau,et al.  Messages from ultrahigh resolution crystal structures. , 1998, Current opinion in structural biology.

[89]  T. Yamazaki,et al.  Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272. , 1996, Biochemistry.

[90]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[91]  R. Boelens,et al.  Altered flexibility in the substrate-binding site of related native and engineered high-alkaline Bacillus subtilisins. , 1999, Journal of molecular biology.

[92]  Ronald M. Levy,et al.  Propagation of experimental uncertainties using the Lipari-Szabo model-free analysis of protein dynamics , 1998, Journal of biomolecular NMR.

[93]  Angela M. Gronenborn,et al.  The Impact of Direct Refinement against 13Cα and 13Cβ Chemical Shifts on Protein Structure Determination by NMR , 1995 .

[94]  A. Mildvan,et al.  4‐Oxalocrotonate tautomerase, a 41‐kDa homohexamer: Backbone and side‐chain resonance assignments, solution secondary structure, and location of active site residues by heteronuclear NMR spectroscopy , 1996, Protein science : a publication of the Protein Society.

[95]  L. Kay,et al.  A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. , 1998, Journal of molecular biology.

[96]  N. Wolff,et al.  Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study , 1999, Journal of biomolecular NMR.