GLOBAL ANOMALIES IN CANONICAL GRAVITY

[1]  R. Sorkin,et al.  AN ANALYSIS OF THE REPRESENTATIONS OF THE MAPPING CLASS GROUP OF A MULTIGEON THREE-MANIFOLD , 1996, gr-qc/9605050.

[2]  A. Higuchi,et al.  On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces , 1995, gr-qc/9505009.

[3]  E. Ercolessi,et al.  Inequivalent quantizations of Yang-Mills theory on a cylinder , 1994 .

[4]  Chang,et al.  Standard model with gravity couplings. , 1994, Physical review. D, Particles and fields.

[5]  Christian Bär The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces , 1992 .

[6]  D. Witt Symmetry groups of state vectors in canonical quantum gravity , 1986 .

[7]  Philip Nelson,et al.  Hamiltonian interpretation of anomalies , 1985 .

[8]  J. Birman,et al.  One-Sided Heegaard Splittings and Homeotopy Groups of Some 3-Manifolds , 1984 .

[9]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[11]  A. Hatcher,et al.  A proof of the Smale Conjecture, Diff(S3) 0(4) , 1983 .

[12]  E. Witten An SU(2) anomaly , 1982 .

[13]  J. H. Rubinstein,et al.  On 3-manifolds that have finite fundamental group and contain Klein bottles , 1979 .

[14]  A. P. Balachandran Classical Topology and Quantum Phases: Quantum Mechanics , 1989 .

[15]  C. Hodgson,et al.  Involutions and isotopies of lens spaces , 1985 .

[16]  M. Atiyah,et al.  The Index of elliptic operators. 5. , 1971 .

[17]  M. Atiyah,et al.  The Index of Elliptic Operators: IV , 1971 .