New perspectives on thermosphere tides: 1. Lower thermosphere spectra and seasonal-latitudinal structures

[1]  J. Russell,et al.  Global structure and seasonal variability of the migrating terdiurnal tide in the mesosphere and lower thermosphere , 2013 .

[2]  J. Forbes,et al.  A decade‐long climatology of terdiurnal tides using TIMED/SABER observations , 2013 .

[3]  A. Coster,et al.  The potential role of stratospheric ozone in the stratosphere‐ionosphere coupling during stratospheric warmings , 2012 .

[4]  W. Wan,et al.  Strong evidence for couplings between the ionospheric wave‐4 structure and atmospheric tides , 2011 .

[5]  W. Ward,et al.  Terdiurnal tide in the extended Canadian Middle Atmospheric Model (CMAM) , 2010 .

[6]  J. Forbes,et al.  Longitudinal variation of tides in the MLT region: 1. Tides driven by tropospheric net radiative heating , 2010 .

[7]  Wenbin Wang,et al.  Ionospheric variability due to planetary waves and tides for solar minimum conditions , 2010 .

[8]  J. Forbes,et al.  Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating , 2010 .

[9]  J. Forbes,et al.  Evidence for stratosphere sudden warming‐ionosphere coupling due to vertically propagating tides , 2010 .

[10]  J. Huba,et al.  Modeling of multiple effects of atmospheric tides on the ionosphere: An examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere , 2010 .

[11]  Zhanqing Li,et al.  Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar , 2010 .

[12]  S. Sridharan,et al.  Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events , 2009 .

[13]  S. Bruinsma,et al.  Surface‐exosphere coupling due to thermal tides , 2009 .

[14]  H. Lühr,et al.  Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP , 2009 .

[15]  J. Forbes,et al.  Upward propagating tidal effects across the E- and F-regions of the ionosphere , 2009 .

[16]  Jorge L. Chau,et al.  Quiet variability of equatorial E × B drifts during a sudden stratospheric warming event , 2009 .

[17]  L. Chang,et al.  Short‐term variation of the s = 1 nonmigrating semidiurnal tide during the 2002 stratospheric sudden warming , 2009 .

[18]  Shunrong Zhang,et al.  Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude , 2008 .

[19]  L. Paxton,et al.  Wave structures of the plasma density and vertical E × B drift in low‐latitude F region , 2008 .

[20]  H. Jin,et al.  Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure , 2008 .

[21]  S. Watanabe,et al.  Seasonal variation of the longitudinal structure of the equatorial ionosphere: Does it reflect tidal influences from below? , 2008 .

[22]  J. Forbes,et al.  Tidal variability in the ionospheric dynamo region , 2008 .

[23]  Jeffrey M. Forbes,et al.  Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations , 2008 .

[24]  Jann‐Yenq Liu,et al.  Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure , 2007 .

[25]  L. Paxton,et al.  Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT‐1 , 2007 .

[26]  F. Yi,et al.  A numerical study on amplitude characteristics of the terdiurnal tide excited by nonlinear interaction between the diurnal and semidiurnal tides , 2007 .

[27]  J. Forbes,et al.  Troposphere-Thermosphere Tidal Coupling as Measured by the SABER Instrument on TIMED during July-September, 2002 , 2006 .

[28]  Larry J. Paxton,et al.  Control of equatorial ionospheric morphology by atmospheric tides , 2006 .

[29]  Dong L. Wu,et al.  Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS , 2006 .

[30]  N. Mitchell,et al.  Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68°N, 21°E) during winter , 2004 .

[31]  E. Remsberg,et al.  Variability of diurnal tides and planetary waves during November 1978-May 1979 , 2004 .

[32]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release: MIGRATING AND NONMIGRATING SEMIDIURNAL TIDES , 2003 .

[33]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release , 2002 .

[34]  Raymond G. Roble,et al.  A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3 , 2002 .

[35]  J. Forbes,et al.  Nonlinear interactions in the upper atmosphere: The s = 1 and s = 3 nonmigrating semidiurnal tides , 2002 .

[36]  Y. Miyoshi,et al.  Seasonal variation of non-migrating semidiurnal tide in the polar MLT region in a general circulation model , 2002 .

[37]  D. Ortland,et al.  Modeling and analysis of the structure and generation of the terdiurnal tide , 2001 .

[38]  R. Roble,et al.  Modeling diurnal tidal variability with the National Center for Atmospheric Research thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model , 2001 .

[39]  R. Akmaev Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: A model study , 2001 .

[40]  N. Mitchell,et al.  Non-linear interactions between tides and planetary waves resulting in periodic tidal variability , 1999 .

[41]  Farzad Kamalabadi,et al.  Evidence for nonlinear coupling of planetary waves and tides in the Antarctic mesopause , 1997 .

[42]  C. Williams,et al.  Diurnal nonmigrating tidal oscillations forced by deep convective clouds , 1996 .

[43]  H. Hendon,et al.  The diurnal cycle of tropical convection , 1993 .

[44]  H. Teitelbaum,et al.  On tidal variability induced by nonlinear interaction with planetary waves , 1991 .

[45]  I. Yagai Nonmigrating thermal tides detected in data analysis and a general circulation model simulation , 1989 .

[46]  J. Forbes,et al.  Theoretical studies of atmospheric tides , 1979 .

[47]  R. Walterscheid,et al.  Influence of Mean Zonal Motion and Meridional Temperature Gradients on the Solar Semidiurnal Atmospheric Tide: A Spectral Study. Part II: Numerical Results , 1979 .

[48]  R. Walterscheid,et al.  Influence of Mean Zonal Motion and Meridional Temperature Gradients on the Solar Semidiurnal Atmospheric Tide: A Spectral Study. Part I: Theory , 1979 .

[49]  J. Forbes,et al.  Thermal excitation of atmospheric tides due to insolation absorption by O3 and H2O , 1978 .

[50]  R. Lindzen,et al.  Effects of Mean Winds and Horizontal Temperature Gradients on Solar and Lunar Semidiurnal Tides in the Atmosphere. , 1974 .

[51]  M. Geller An Investigation of the Lunar Semidiurnal Tide in the Atmosphere. , 1970 .

[52]  R. Roble,et al.  Tropospheric tidal effects on the middle and upper atmosphere , 2009 .

[53]  I. Yagai,et al.  Atmospheric Tides Appearing in a Global Atmospheric General Circulation Model , 1987 .

[54]  M. Geller Atmospheric tides—Thermal and gravitational , 1972 .